

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.34.007.A № 43403

Срок действия до 04 августа 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Измерители частичных разрядов "КОРОНА-19"

ИЗГОТОВИТЕЛЬ

ООО Технический Центр "Промышленные системы" (ООО ТЦ "Промышленные системы"), г.Новосибирск

РЕГИСТРАЦИОННЫЙ № 47381-11

ДОКУМЕНТ НА ПОВЕРКУ ТЦПС. 411188.020 РЭ, раздел 8

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **04 августа 2011 г.** № **4174**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	В.Н.Крутиков
Федерального агентства	
	 2011 г.

№ 001380

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители частичных разрядов «Корона-19»

Назначение средства измерений

Измеритель частичных разрядов «КОРОНА-19» (ИЧР) предназначен для измерения и регистрации характеристик частичных разрядов в изоляции высоковольтного оборудования (силовые и измерительные трансформаторы, в том числе и их вводы; вводы масляных выключателей; конденсаторы связи; силовые кабели; двигатели и генераторы; шунтирующие реакторы), находящегося в эксплуатации под рабочим напряжением, с целью определения опасного для объекта контроля уровня частичных разрядов.

Описание средства измерений

Принцип работы ИЧР заключается в измерении и регистрации импульсных сигналов датчиков частичных разрядов, установленных на объектах контроля, в изоляции которых возникают частичные разряды. Импульсные сигналы датчиков передаются по линиям связи в модуль измерительный, где происходит их аналогоцифровое преобразование. Цифровая информация по шине USB передается в портативный персональный компьютер (ПК), где производится статистическая обработка измерений и заполнение базы данных. Текущие характеристики частичных разрядов отображаются на мониторе ПК.

Модуль измерительный имеет четыре канала. Все каналы идентичны, каждый канал содержит пиковый детектор и устройство выборки и хранения.

Измерение и регистрация частичных разрядов в изоляции объекта контроля производится электрическим методом в соответствии с рекомендациями ГОСТ 20074-83 В качестве датчиков ЧР применяются высокочастотные трансформаторы тока типа МСТ 100 (ОМІСКОN), серия RFCT (ООО "Димрус»), серия ДЧР (ООО ТЦ «Промышленные системы»), конденсаторы связи МСС 112 (ОМІСКОN), ТІЅ-11 (ООО ТЦ «Промышленные системы»). Калибровка осуществляется для всей схемы измерений путем инжекции нормированного заряда в цепь окончательно собранной схемы измерений, погрешностью датчиков в этом случае пренебрегают.

Характеристики частичных разрядов вычисляются в «фазовом окне» ТF, на мониторе ПК, положение и длительность «фазового окна» ТF регулируются в пределах периода напряжения сети 50 Гц и устанавливаются из условий минимальных помех.

Вся информация о результатах измерения частичных разрядов (ЧР) отображается на мониторе ПК в виде графиков и сохраняется в памяти ПК.

Пример записи при заказе:

Измеритель частичных разрядов «КОРОНА-19» ТЦПС.411188.020 ТУ.

Программное обеспечение

Программное обеспечение (ПО) состоит из драйвера, библиотеки функций и исполняемого модуля, регистрируемых в операционной системе. Исполняемый модуль обеспечивает все функции управления ИЧР:

- ввод фактографических данных об объекте контроля,
- измерение, ввод и обработку данных измерений,
- интерфейс, отображающий измерения и все действия оператора (пользователя).

	Идентификационные данные	ПО приведены в таблице 1.
Табли	пца 1	

Наименование	Идентификацион-	Номер версии	Цифровой иден-	Алгоритм вы-
программного	ное наименование	(идентификаци-	тификатор прог-	числения циф-
обеспечения	программного	онный номер)	раммного обес-	рового иден-
	обеспечения	программного	печения (контро-	тификатора
		обеспечения	льная сумма ис-	программного
			полняемого кода)	обеспечения
«Корона»	PDV_USB.exe	Корона-USB	PO_K-19.md5 1)-	md5v12011
		вер.4.3.144	файл контроль-	
			ной суммы	

 $^{^{1)}\,}$ 5aa
018b6afcaa 46410722b283222e495 — значение контрольной XEШ-суммы

Идентификация ПО заключается в идентификации исполняемого модуля PDV_USB.exe и обеспечивается файлом контрольной XEIII-суммы указанного модуля PO K-19.md5.

Уровень защиты ПО от преднамеренных и непреднамеренных изменений соответствует уровню «А» по МИ 3286-2010.

На рисунке 1 представлена фотография общего вида ИЧР.

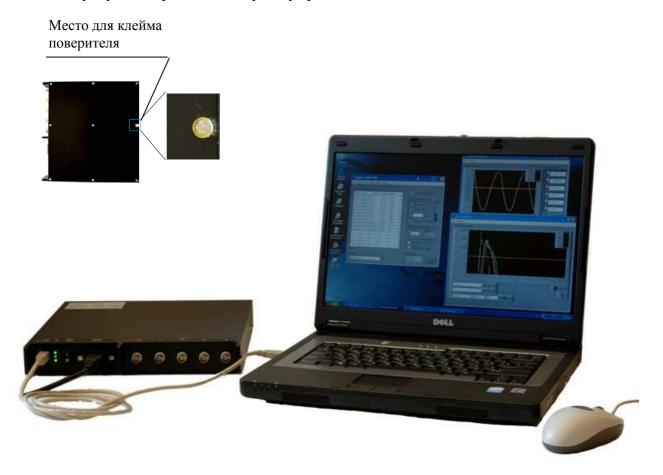


Рисунок 1- Измеритель частичных разрядов «КОРОНА-19». Общий вид.

Метрологические и технические характеристики

Число синхронных измерительных каналов	4.
Диапазон рабочих частот, МГц	от 1,5 до 10.
Подавление сигналов вне диапазона рабочих частот, дБ, не мене	ee:
ниже частоты 900 кГц	30;
свыше частоты 30 МГц	20.
Диапазон измеряемых зарядов ЧР1, нКл	0,05 до 100.
Предел допускаемой погрешности измерения зарядов ЧР, %	$\pm (30 + 1/q)$,
	еренный заряд, нКл.
Диапазон измеряемых токов ¹⁾ ЧР, мкА,	от 1 до 1000.
Предел допускаемой погрешности измерения токов ЧР, %	$\pm (30 + 60/i),$
где i¹¹ -	измеренный ток, мкА.
Напряжение питающей сети, В	от 198 до 242.
Частота питающей сети, Гц	50 ± 0.5 .
Потребляемая мощность, В•А, не более	
Время непрерывной работы, ч/сутки	24.
Средняя наработка на отказ, ч, не менее	10000.
Средний срок службы, лет, не менее	10.
Среднее время восстановления, ч, не более	4.
Габаритные размеры, мм, не более:	
- модуль измерительный	
- портативный персональный компьютер	
- футляр	
Масса ИЧР в футляре, кг, не более	10.
Рабочие условия применения:	2)
- температура окружающего воздуха, °С	от 5 до 40^{2} ;
- относительная влажность воздуха при 25°C,%	
- атмосферное давление кПа (мм рт. ст.)	84 - 106,5 (630 – 800).

 $^{^{1}}$) - при R = 0,5, где R - это коэффициент регулярности, представляющий собой отношение числа периодов напряжения, в которых возникают ЧР свыше определенной интенсивности, к общему числу периодов напряжения за время измерения ЧР.

Знак утверждения типа

Знак утверждения типа наносится на шильдик ИЧР методом шелкографии. На титульных листах паспорта и руководства по эксплуатации изображение Знака наносится печатным способом.

²) - ограничивается спецификацией портативного персонального компьютера.

Комплектность средства измерений

Комплект поставки ИЧР приведен таблице 2. Таблица 2

Обозначение	Наименование	Кол-во	Примечание
ТЦПС. 411188.020	Модуль измерительный	1	
	Портативный персональный компьютер*)	1	Ноутбук
ТЦПС. 411188.020 РЭ	Руководство по эксплуатации	1	
ТЦПС.411188.020 ПС	Паспорт	1	
ТЦПС. 411188.020 ДИ	CD-диск с документацией	1	
	Футляр	1	Кейс Класс
			защиты IP-65

^{*) –} Допускается комплектование портативными персональными ЭВМ

Поверка

осуществляется по методике, приведенной в разделе 8 «Поверка» документа «Измеритель частичных разрядов «КОРОНА-19» Руководство по эксплуатации ТЦПС. 411188.020 РЭ», утвержденной ГЦИ СИ СНИИМ 12 августа 2010 г.

Перечень основных средств поверки приведен в таблице 3.

Таблица 3

№ п/п	Наименование	Метрологические характеристики
1	Генератор импульсов Г5-60	0,001-10 В (50 Ом), 0,1мкс-10с.
2	Генератор сигналов высокочастотный Г4- 158	0,01-100 МГц
3	Осциллограф цифровой запоминающий TDS – 2014	полоса пропускания 100 МГц, развертка 5нс- 50с/дел.

Сведения о методиках (методах) измерений

Метод измерений приведен в руководстве по эксплуатации ТЦПС. 411188.020 РЭ «Измеритель частичных разрядов «КОРОНА-19».

Нормативные и технические документы, устанавливающие требования к измерителю частичных разрядов «Корона-19»

ТЦПС.411188.020 ТУ Измеритель частичных разрядов «КОРОНА-19». Технические условия.

ГОСТ 20074 - 83. Электрооборудование и электроустановки. Метод измерения характеристик частичных разрядов.

ТЦПС.411188.020 РЭ Измеритель частичных разрядов «КОРОНА-19». Руководство по эксплуатации, раздел 8 «Поверка».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

ООО Технический Центр «Промышленные системы»

(ООО ТЦ «Промышленные системы»).

Адрес: 630126, г.Новосибирск, ул.Кленовая 10/1,

тел./факс: (383) 2065109.

Испытательный центр

ГЦИ СИ ФГУП «Сибирский государственный научно-исследовательский институт метрологии», регистрационный номер 30007-09 Адрес: 630004 г. Новосибирск, пр. Димитрова, 4. Тел. 8(383) 210-16-18 e-mail: evgrafov@sniim.nsk.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

В.Н.Крутиков

M.п. « » 2011 г.