

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

GB.C.31.001.A № 43677

Срок действия до 06 сентября 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Спектрометры рентгенофлуоресцентные X-Supreme8000

ИЗГОТОВИТЕЛЬ

Фирма "Oxford Instruments Analytical", Великобритания

РЕГИСТРАЦИОННЫЙ № 47599-11

ДОКУМЕНТ НА ПОВЕРКУ МП-242-1141-2011

интервал между поверками 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **06 сентября 2011 г.** № **4782**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Е.Р. Петросян
Федерального агентства		
	""	2011 г.

№ 001765

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрометры рентгенофлуоресцентные X-Supreme8000

Назначение средства измерений

Спектрометры X-Supreme8000 предназначены для предназначены для измерения содержания элементов, входящих в состав твердых и жидких веществ, порошков, пленок и материалов по спектрам рентгеновской флуоресценции.

Описание средства измерений

Спектрометр рентгенофлуоресцентный X-Supreme8000 представляет собой стационарный автоматизированный прибор, обеспечивающий измерение, обработку и регистрацию выходной информации. Принцип действия прибора основан на методе энергодисперсионного рентгенофлуоресцентного анализа.

Спектрометр состоит из источника рентгеновского излучения, устройства для установки и смены исследуемых образцов, приемника вторичного излучения, системы управления, регистрации и обработки данных, автоподатчика исследуемых образцов на 10 измерительных позиций.

В качестве источника рентгеновского излучения в спектрометре используется рентгеновская трубка (U_{max} =30 кВ, I_{max} =1 мА, максимальная мощность 3 ВА, материал анода – вольфрам или палладий). В измерительном канале используется система первичных фильтров, кремниевый дрейфовый детектор (Silicon Drift Detector – SDD) с двухступенчатой системой охлаждения на элементах Пельтье. Также для увеличения чувствительности прибора к легким элементам используется продувка газообразным гелием.

Возбужденное в образце вторичное (характеристическое) излучение попадает на детектор, сигнал с которого обрабатывается многоканальным спектрометром. Конструктивно спектрометр выполнен в виде настольного прибора с клавиатурой и цветным дисплеем. Управление прибором осуществляется от встроенного компьютера с помощью специального программного комплекса. Прибор оснащен встроенным устройством для смены образцов (10 позиций), встроенным жестким диском, USB и Ethernet портами.

Внешний вид спектрометра показан на рисунке 1.

Рис.1 Спектрометр X-Supreme8000

Программное обеспечение

Программное обеспечение предназначено для управления работой спектрометра и процес-

сом измерений, а также для хранения и обработки полученных данных.

		Номер версии	Цифровой иденти-	Алгоритм вы-
Наименова-	Идентификацион-	(идентифика-	фикатор программ-	числения циф-
ние про-	ное наименование	ционный но-	ного обеспечения	рового иденти-
граммного	программного	мер) про-	(контрольная сумма	фикатора про-
обеспечения	обеспечения	граммного	метрологической	граммного
		обеспечения	значимой части ПО)	обеспечения
X-Supreme	X-Supreme software	2.0	0144db1e4d2ccad00e	MD5
software	Version 2.0	2.0	54502a4973d240	MIDS

Структура ПО включает в себя блоки, отвечающие за управление прибором, получение и хранение данных и блоки, отвечающие за интрефейс пользователя и вывод информации.

Защита программного обеспечения от несанкционированных изменений обеспечивается расчетом цифрового идентификатора метрологически значимой части ПО и сравнением его с исходным. Защита программного обеспечения от непреднамеренных действий обеспечивается функциями резервного копирования. Погрешность программного обеспечения входит в суммарную погрешность спектрометра. Уровень защиты ПО относится к категории С по МИ 3286-2010. Идентификатор метрологически значимой части ПО указан в первой цифре номера версии.

Метрологические и технические характеристики

Диапазон регистрируемых элементов	от Na(11)Kα до U(92)Lα
Энергетическое разрешение детектора, эВ, не более	200
Чувствительность (по контрольному элементу $-Zn^{1}$), имп/с, не менее	6000
Относительное СКО выходного сигнала ¹ , %, не более	0,3
Напряжение питания переменного тока частотой 50±1 Гц, В	220^{+22}_{-33}
Потребляемая мощность, В А, не более	400
Габаритные размеры (длина×ширина×высота), мм, не более	600×800×580
Масса, кг, не более	45
Средний срок службы, лет	8
Условия эксплуатации:	
-диапазон температур окружающей среды, °С	от 15 до 30
-диапазон относительной влажности, %	от 15 до 80
-диапазон атмосферного давления, кПа	от 84 до 106

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации методом компьютерной графики и на левую боковую панель корпуса спектрометра в виде наклейки.

Комплектность средства измерений

Спектрометр.

Руководство по эксплуатации.

Методика поверки.

Поверка

осуществляется по документу "Спектрометры рентгенофлуоресцентные X-Suprime8000 фирмы "Oxford Instruments Analytical", Великобритания. Методика поверки МП 242-1141-2011", утвержденным ГЦИ СИ ФГУП "ВНИИМ им.Д.И.Менделеева" 05.05.2011 г.

¹ С использованием стандартного образца состава цинка ГСО 8743-2006 (индекс VSZ1-10).

Основные средства поверки: стандартный образец состава цинка ГСО 8743-2006 (индекс VSZ1-10).

Сведения о методиках (методах) измерений

- 1. ГОСТ 5382-91 Цементы и материалы цементного производства. Методы химического анализа.
- 2. ГОСТ Р 51795-2001 Цементы. Методы определения содержания минеральных добавок.

Нормативные и технические документы, устанавливающие требования к спектрометрам рентгенофлуоресцентным X-Suprime8000

- 1. Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99) СП 2.6.1.799-99, Минздрав России, $2000 \, \Gamma$.
- 2. Гигиенические требования к устройству и эксплуатации источников, генерирующих рентгеновское излучение при ускоряющем напряжении от 10 до 100 кВ (СП2.6.1.1282-03).
- 3. Техническая документация фирмы "Oxford Instruments Analytical", Великобритания.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении деятельности в области охраны окружающей среды,
- при выполнении работ по обеспечению безопасных условий и охраны труда,
- при выполнении работ по оценке соответствия продукции установленным законодательством Российской Федерации обязательным требованиям

Изготовитель

фирма «Oxford Instruments Analytical», Великобритания.

Адрес: Halifax Road, High Wycombe, Bucks HP12 3SE, UK, Тел.: +44 (0) 1494 442255.

Факс: +44 (0) 1494 524129. Эл.почта: Industrial@oxinst.com.

Заявитель

ЗАО «Экситон Аналитик», г.Санкт-Петербург.

Юридический адрес: 194356, С-Петербург, пр. Энгельса д. 128, 4Н.

Почтовый адрес: 195220, С-Петербург, а/я 26.

Тел. (812) 322-58-99. Факс (812) 322-58-98. Эл.почта: info@exiton-analytic.ru.

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева», рег.№ 30001-10.

Адрес: 190005, Санкт-Петербург, Московский пр., 19, тел.: (812) 251-76-01, факс: (812)

713-01-14, эл.почта: info@vniim.ru.

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

MΠ. «__»___2011