

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.010.A № 43699

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО "Астраханское стекловолокно"

ЗАВОДСКОЙ НОМЕР 017

ИЗГОТОВИТЕЛЬ
ООО "ПКФ "Тенинтер", г.Москва

РЕГИСТРАЦИОННЫЙ № 47638-11

ДОКУМЕНТ НА ПОВЕРКУ МП 1065/446-2011

Серия СИ

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **06 сентября 2011 г.** № **4782**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Ваместитель Руководителя		Е.Р. Петросян
Федерального агентства		
	""	2011 г.

№ 001716

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Астраханское стекловолокно»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Астраханское стекловолокно» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, для осуществления эффективного автоматизированного коммерческого учета и контроля выработки и потребления электроэнергии и мощности по точкам поставки, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в ОАО «АТС», ЦСОД АИИС КУЭ филиала ОАО «МРСК Юга» – «Астраханьэнерго», филиал ОАО «СО ЕЭС» Астраханское РДУ, ООО «ГАРАНТ ЭНЕРГО» и прочим заинтересованным организациям в рамках согласованного регламента.

Полученные данные и результаты измерений используются для расчета учетных показателей в точках поставки согласованных со смежными субъектами ОРЭМ, а также могут использоваться для оперативного управления энергопотреблением.

Описание средства измерений

АИИС КУЭ, построена на основе ИВК «Альфа Центр» (Госреестр № 44595-10) и представляет собой автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные комплексы (ИИК) АИИС КУЭ состоят из трех уровней:

1-ый уровень – измерительные каналы (ИК), включают в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-ой уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ) включающий устройства сбора и передачи данных (УСПД) RTU 325L Госреестр № 37288-08, устройство синхронизации системного времени (УССВ), включающее в себя приемник GPS-сигналов 35LVS, подключенный к УСПД ПС «Стекловолокно», технические средства приема-передачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-ий уровень – информационно-вычислительный комплекс (ИВК), включает в себя сервер базы данных (СБД), автоматизированное рабочее место (АРМ ИВК) а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

В качестве СБД используется компьютер на базе серверной платформы DELL Power Edge R210 с программным обеспечением ИВК «Альфа Центр».

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в 30 мин) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);

- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений смежным субъектам OPЭM в соответствии с требованиями регламентов OPЭM;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИ-ИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени);
- передача журналов событий счетчиков.

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

Цифровой сигнал с выходов счетчиков, посредством линий связи RS-485 и через GSM модемы поступает в УСПД. УСПД осуществляет вычисление электроэнергии и мощности с учетом коэффициентов трансформации TT и TH (в счетчике коэффициенты трансформации выбраны равные 1), хранение измерительной информации и журналов событий, передачу результатов измерений через GSM модемы в CEM АИИС KYEM9.

Далее СБД АИИС КУЭ при помощи программного обеспечения (ПО) осуществляет формирование, хранение, оформление справочных и отчетных документов и последующую передачу информации по каналам связи Internet в ОАО «АТС», ЦСОД АИИС КУЭ филиала ОАО «МРСК Юга» — «Астраханьэнерго», филиал ОАО «СО ЕЭС» Астраханское РДУ, ООО «ГАРАНТ ЭНЕРГО» и смежным субъектам ОРЭМ в соответствии с требованиями регламентов ОРЭМ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). СОЕВ выполняет законченную функцию измерений времени, имеет нормированные метрологические характеристики и обеспечивает автоматическую синхронизацию времени. Для обеспечения единства измерений используется единое календарное время. В СОЕВ входят все средства измерений времени (таймеры счетчиков, УСПД, СБД).

В качестве базового прибора СОЕВ используется УССВ на базе приёмника GPS-сигналов 35LVS, который подключен к УСПД ПС «Стекловолокно». Измерение времени в АИИС КУЭ происходит автоматически на всех уровнях системы внутренними таймерами устройств, входящих в систему. Коррекция отклонений встроенных часов осуществляется при помощи синхронизации таймеров устройств с единым временем, поддерживаемым УСПД. Коррекция времени в УСПД происходит от GPS-приемника.

Полученное УСПД ПС «Стекловолокно» точное время, по каналу GSM- связи непрерывно предаётся УСПД ПС «Прогресс».

Полученное от УСПД ПС «Стекловолокно» точное время, при помощи программного обеспечения СБД ПО Альфа-Центр АС_Т, устанавливается на СБД.

Сличение времени счётчиков со временем УСПД происходит каждые тридцать минут. Корректировка времени осуществляется при расхождении времени счётчиков со временем УСПД на величину более ± 1 с.

Предел допускаемой абсолютной погрешности хода часов АИИС КУЭ ОАО «Астраханское стекловолокно»: ± 5 с/сутки.

Программное обеспечение

В состав ПО АИИС КУЭ входит: ПО счетчиков электроэнергии и ПО СБД. Программные средства СБД АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных (СУБД) и прикладное ПО ИВК «Альфа Центр», ПО СОЕВ. Состав программного обеспечения АИИС КУЭ ОАО «Астраханское стекловолокно» приведён в таблице 1.

Таблица 1

Наименование программного обеспечения	Наименование программного модуля (идентификационное наименование программного обеспечения)	Наименование файла	Номер версии программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентифика-тора программного обеспечения	
ПО «Альфа ЦЕНТР»	Программа- планировщик опроса и передачи данных (стандартный ката- лог для всех модулей C:\alphacenter\exe)	Amrserver.exe		04372271f106385cf 7148acd422eb354		
	драйвер ручного опроса счетчиков и УСПД	Amrc.exe	3.27.3.0	be05a81e184a68adf e924628e3d74325	MD5	
	драйвер автомати- ческого опроса счет- чиков и УСПД	Amra.exe		69f921b86348de5d0 e192282e7b94337		
	драйвер работы с БД	Cdbora2.dll		cde81805a149c00c3 d0f50eecd201407		
	библиотека сообщений планировщика опросов	alphamess.dll		b8c331abb5e344441 70eee9317d635cd		

ПО ИВК «Альфа Центр» не влияет на метрологические характеристики АИИС КУЭ ОАО «Астраханское стекловолокно».

Уровень защиты программного обеспечения АИИС КУЭ ОАО «Астраханское стекловолокно» от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительно-информационных комплексов АИИС КУЭ ОАО «Астраханское стекловолокно» приведен в Таблице 2.

Границы допускаемой относительной погрешности измерения активной и реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ приведены в Таблице 3.

Таблица 2

	олица 2	Состав и	змерительно-инфор	мационных компле	ексов	D
№ ИИК	Наименование ИИК	Трансформатор тока	Трансформатор напряжения	Счетчик элек- трической энер- гии	УСПД	- Вид элек- троэнер- гии
1	2	3	4	5	6	7
1	ПС 35/6 кВ Прогресс РУ-6 кВ, 2 СШ-6 кВ, яч.22, Ф.22	ТПОЛ – 10 Кл.т. 0,5 Ктт= 800/5 ф.А. №: 8367 ф.С. №: 15655 Госреестр № 1261-02	НТМИ-6-66 Кл.т. 0,5 Ктт = 6000/100 № 9958 Госреестр № 2611-70	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971873 Госреестр № 31857-06	RTU 325L 3aв. №	Активная Реактивная
2	ПС 35/6 кВ Прогресс РУ-6 кВ, 1 СШ-6 кВ, яч.11, Ф.11	ТПОЛ – 10 Кл.т. 0,5 Ктт= 600/5 ф.А №: 6079 ф.С №: 31225 Госреестр № 1261-02	HTMИ-6-66 Кл.т. 0,5 Ктт = 6000/100 № 2029 Госреестр № 2611-70	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971877 Госреестр № 31857-06	Госреестр № 37288-08	Активная Реактивная
3	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 1 СШ-6 кВ, яч.2, Ф.2	ТПЛ-10 Кл.т. 0,5 Ктт= 100/5 ф.А №:2227 ф.С №:1758 Госреестр № 1276-59	НТМИ-6 Кл.т. 0,5 Ктт = 6000/100 № 1286 Госреестр № 380-49	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971914 Госреестр № 31857-06		Активная Реактивная
4	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 1 СШ-6 кВ, яч.3, Ф.3	ТПЛ-10 Кл.т. 0,5 Ктт= 200/5 ф.А №: б/н ф.С №:12881 Госреестр № 1276-59	НТМИ-6 Кл.т. 0,5 Ктт = 6000/100 № 1286 Госреестр № 380-49	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971888 Госреестр № 31857-06		Активная Реактивная
5	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 1 СШ-6 кВ, яч.4, Ф.4	ТПЛ-10 Кл.т. 0,5 Ктт= 200/5 ф.А №: 603 ф.С №:30553 Госреестр № 1276-59	НТМИ-6 Кл.т. 0,5 Ктт = 6000/100 № 1286 Госреестр № 380-49	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971869 Госреестр № 31857-06		Активная Реактивная
6	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 1 СШ-6 кВ, яч.13, Ф.13	ТПЛ-10 ТЛМ-10 Кл.т. 0,5 Ктт= 200/5 ф.А №: 56180 ф.С №:02504 Госреестр № 1276-59	НТМИ-6 Кл.т. 0,5 Ктт = 6000/100 № 1286 Госреестр № 380-49	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971890 Госреестр № 31857-06	RTU 325L _3aв. №	Активная Реактивная
7	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 1 СШ-6 кВ, яч. 15, Ф.15	ТПЛ-10У3 Кл.т. 0,5 Ктт= 200/5 ф.А №: 4085 ф.С №:39709 Госреестр № 1276-59	НТМИ-6 Кл.т. 0,5 Ктт = 6000/100 № 1286 Госреестр № 380-49	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971926 Госреестр № 31857-06	Госреестр № 37288-08	Активная Реактивная
8	ПС 35/6 кВ Стекловолокно РУ-6 кВ, 1 СШ-6 кВ, яч.16, Ф.16	ТПЛ-10 Кл.т. 0,5 Ктт= 200/5 ф.А №: 56299 ф.С №:38101 Госреестр № 1276-59	НТМИ-6 Кл.т. 0,5 Ктт = 6000/100 № 1286 Госреестр № 380-49	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971796 Госреестр № 31857-06		Активная Реактивная
9	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 2 СШ-6 кВ, яч.19, Ф.19	ТПЛ-10 Кл.т. 0,5 Ктт= 150/5 ф.А. №: 3796 ф.С. №:22000 Госреестр № 1276-59	НАМИ-10-95 Кл.т. 0,5 Ктт = 6000/100 № 721 Госреестр № 20186-00	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971771 Госреестр № 31857-06		Активная Реактивная
10	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 2 СШ-6 кВ, яч. 20, Ф.20	ТПЛ-10 Кл.т. 0,5 Ктт= 150/5 ф.А №: 0627 ф.С №:5381 Госреестр № 1276-59	НАМИ-10-95 Кл.т. 0,5 Ктт = 6000/100 № 721 Госреестр № 20186-00	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971772 Госреестр № 31857-06		Активная Реактивная

Продолжение таблицы 2

1	2	3	4	5	6	7
11	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 2 СШ-6 кВ, яч. 21, Ф.21	ТПЛ-10 Кл.т. 0,5 Ктт= 400/5 ф.А №: 25661 ф.С №:21774 Госреестр № 1276-59	НАМИ-10-95 Кл.т. 0,5 Ктт = 6000/100 № 721 Госреестр № 20186-00	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971790 Госреестр № 31857-06		Активная Реактивная
12	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 2 СШ-6 кВ, яч.22, Ф.22	ТПЛ-10 Кл.т. 0,5 Ктт= 100/5 ф.А №: 11531 ф.С №:30112 Госреестр № 1276-59	НАМИ-10-95 Кл.т. 0,5 Ктт = 6000/100 № 721 Госреестр № 20186-00	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971848 Госреестр № 31857-06		Активная Реактивная
13	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 2 СШ-6 кВ, яч. 25, Ф.25	ТПЛ-10 Кл.т. 0,5 Ктт= 400/5 ф.А №: 25074 ф.С №:84770 Госреестр № 1276-59	НАМИ-10-95 Кл.т. 0,5 Ктт = 6000/100 № 721 Госреестр № 20186-00	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971923 Госреестр № 31857-06	RTU 325L Зав. № Госреестр № 37288-08	Активная Реактивная
14	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 2 СШ-6 кВ, яч.32, Ф.32	ТПЛ-10 Кл.т. 0,5 Ктт= 200/5 ф.А №: 88181 ф.С №: б/н Госреестр № 1276-59	НАМИ-10-95 Кл.т. 0,5 Ктт = 6000/100 № 721 Госреестр № 20186-00	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971778 Госреестр № 31857-06		Активная Реактивная
15	ПС 35/6 кВ Стек- ловолокно РУ-6 кВ, 2 СШ-6 кВ, яч.34, Ф.34	ТПЛ-10 Кл.т. 0,5 Ктт= 100/5 ф.А №: 25848 ф.С №:20990 Госреестр № 1276-59	НАМИ-10-95 Кл.т. 0,5 Ктт = 6000/100 № 721 Госреестр № 20186-00	A1805RL-P4GB- DW-3 Кл.т. 0.5S/1.0 Зав.№ 06971856 Госреестр № 31857-06		Активная Реактивная

Таблина 3

Габлица З						
Границы допускаемой относительной погрешности измерения активной электрической						
	энергии	в рабочих усло	виях эксплуата	ции АИИС КУЭ		
Номер ИИК	cosφ	$\delta_{1(2)}$ %,	$\delta_{5\%},$	$\delta_{20\%},$	δ _{100 %} ,	
Tromp IIIII	- σου φ	$I_{1(2)} \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{u_{3M}} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100} \% \le I_{M3M} \le I_{120} \%$	
	1,0	-	$\pm 2,2$	$\pm 1,7$	±1,6	
1-15	0,9	-	±2,7	±1,9	±1,7	
TT-0,5; TH-0,5;	0,8	-	±3,2	±2,1	±1,9	
Сч-0,5Ѕ	0,7	-	±3,8	±2,4	±2,1	
	0,5	-	±5,7	±3,3	±2,7	
Границы дог	пускаемой с	тносительной	погрешности из	мерения реактивн	ой электриче-	
ской энергии в рабочих условиях эксплуатации АИИС КУЭ						
Номер ИИК	cosφ	$\delta_{1(2)\%}$,	$\delta_{5\%},$	$\delta_{20\%},$	$\delta_{100~\%}$,	
помер иих	C OS C	$I_{2\%} \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{M3M} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{M3M} \le I_{120 \%}$	
	0,9	-	$\pm 7,6$	±4,2	±3,2	
1-15 TT-0,5; TH-0,5;	0,8	-	±5,0	±2,9	±2,4	
Сч-1,0	0,7	-	±4,2	±2,6	±2,2	
- 7-	0,5	-	±3,3	±2,2	±2,0	

Примечания:

- 1. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- $2.\ B$ качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0.95.
- 3. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98·Uном до 1,02·Uном;
 - ток от Іном до 1,2·Іном, $\cos j = 0,9$ инд;

- температура окружающей среды: (20 ± 5) °C.
- 4. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети от 0,9-Ином до 1,1-Ином;
 - ток от 0,05·Іном до 1,2·Іном;
 - температура окружающей среды:
 - для счетчиков электроэнергии от плюс 5 до плюс 35 °C;
 - для трансформаторов тока по ГОСТ 7746-2001;
 - для трансформаторов напряжения по ГОСТ 1983-2001.
- 5. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ Р 52323-2005 в режиме измерения реактивной электроэнергии по ГОСТ 26035-83;
- 6. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 5 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 3. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии Альфа А1800 среднее время наработки на отказ не менее 120000 часов;
- УСПД RTU 325L среднее время наработки на отказ не менее 100000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM $TB \le 1$ час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют возможность пломбирования;
- на счетчиках предусмотрена возможность пломбирование крышки зажимов и откидывающейся прозрачной крышки на лицевой панели счетчика;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, серверах, APM;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и разграничение прав доступа;
- защита результатов измерений при передаче информации (возможность использования цифровой подписи).

Наличие фиксации в журнале событий счетчика следующих событий

- попытки несанкционированного доступа;
- связь со счетчиком, приведшая к изменению данных;
- факты параметрирования счетчика;
- факты пропадания напряжения;
- изменение значений даты и времени при синхронизации;
- отклонение тока и напряжения в измерительных цепях от заданных пределов;
- отсутствие напряжения при наличии тока в измерительных цепях;
- перерывы питания.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- серверах, АРМ (функция автоматизирована).

Глубина хранения информации:

- счетчик электроэнергии Альфа А1800 тридцатиминутный профиль нагрузки в двух направлениях, журнал событий не менее 35 суток;
- ИВК хранение результатов измерений и информации о состоянии средств измерений за весь срок эксплуатации системы.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4 Таблица 4

№ п/п	Наименование	Тип	Количество, шт.
1	Трансформатор тока	ТПОЛ-10	4
2	Трансформатор тока	ТПЛ-10	25
3	Трансформатор тока	ТЛМ-10	1
4	Трансформатор напряжения	НТМИ-6-66	2
5	Трансформатор напряжения	НТМИ-6	1
6	Трансформатор напряжения	НАМИ-10-95	1
7	Счётчик электрической энергии	A1805RL-P4GB-DW-3	15
8	Модем	MC52i	1
9	Модем	ОВЕН ПМ01-220.АВ	4
10	Сервер	DELL Power Edge R210	1
11	Источник бесперебойного питания	APC Smart-UPS 1500VA	1
12	УСПД	RTU-325L	2
13	Устройство синхронизации системного времени	УССВ-35LVS	1
14	Специализированное про- граммное обеспечение	ПО «Альфа-Центр»	1
15	Методика поверки	MΠ 1065/446-2011	1
16	Паспорт – формуляр	05.2011.ЭА-АУ.ФО-ПС	1

Поверка

осуществляется по документу МП 1065/446-2011 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Астраханское стекловолокно». Методика поверки» утвержденному ГЦИ СИ ФГУ «Ростест-Москва» в июле 2011 г.

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003:
- − TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Альфа A1800 по документу МП-2203-0042-2006 "Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки", утвержденному с ГЦИ СИ "ВНИИМ им. Д. И. Менделеева» 19 мая 2006 г.;
- ИВК «Альфа Центр» по методике ДЯИМ.466453.007 МП, утвержденной ГЦИ СИ ВНИИМС в 2010 г.;
- RTU-325L по методике поверки ДЯИМ.466.453.005МП, утвержденной ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.
- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;
- Термометр по ГОСТ 28498, диапазон измерений от минус 40 до плюс 50°С, цена деления 1°С.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе: «Методика (методы) измерений количества электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Астраханское стекловолокно». Свидетельство об аттестации методики (методов) измерений № 891/446-01.00229-2011 от 15 июля 2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ОАО «Астраханское стекловолокно»

- $1~\Gamma OCT~P~8.596-2002~\Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6 ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «ПКФ «Тенинтер»

Адрес (юридический): 109202, г. Москва, ул. 3-я Карачаровская, д. 8, корп. 1

Адрес (почтовый): 109444, г. Москва, Ферганская ул., д. 6, стр. 2

Телефон: 8 (495) 788-48-25 Факс: 8 (495) 788-48-25

Заявитель

ООО «ПКФ «Тенинтер»

Адрес (юридический): 109202, г. Москва, ул. 3-я Карачаровская, д. 8, корп. 1

Адрес (почтовый): 109444, г. Москва, Ферганская ул., д. 6, стр. 2

Телефон: 8 (495) 788-48-25 Факс: 8 (495) 788-48-25

Испытательный центр

Федеральное государственное учреждение «Российский центр испытаний и сертификации – Москва» (ФГУ «Ростест-Москва»). Аттестат аккредитации № 30010-10 от 15.03.2010 года.

117418 г. Москва, Нахимовский проспект, 31 Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11 Факс (499) 124-99-96

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

N	1.П.	«	»	201	1г
---	------	----------	---	-----	----