

# ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

# СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.34.004.A № 43774

Срок действия до 16 сентября 2016 г.

НА<mark>ИМЕН</mark>ОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Преобразователи измерительные многофункциональные МИП-02XXX

#### **ИЗГОТОВИТЕЛЬ**

Закрытое акционерное общество "РТСофт (ЗАО "РТСофт"), г. Черноголовка Московской обл.

РЕГИСТРАЦИОННЫЙ № 47687-11

ДОКУМЕНТ НА ПОВЕРКУ ЛКЖТ2.721.004 МИ

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 8 лет

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 16 сентября 2011 г. № 4992

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

| Заместитель Руководителя |    | Е.Р.Петрося |
|--------------------------|----|-------------|
| Федерального агентства   |    |             |
|                          |    |             |
|                          | "" | 2011 г.     |

Серия СИ

№ 001792

### ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

### Преобразователи измерительные многофункциональные МИП-02XXX

#### Назначение средства измерений

Преобразователи измерительные многофункциональные МИП-02XXX (в дальней-шем – преобразователь МИП-02) предназначены для:

- измерений параметров (частоты, напряжений, токов, мощностей, и т.д.) 3-проводных и 4-проводных электрических сетей переменного трехфазного тока с номинальной частотой 50  $\Gamma$ ц;
- измерений и учета активной и реактивной энергии за установленные интервалы времени в трехфазных сетях переменного тока в соответствии с требованиями ГОСТ Р 52323-2005 для счетчиков активной энергии класса 0,2S и требованиями ГОСТ Р 52425-2005 для счетчиков реактивной энергии класса 1;
- измерений показателей качества электроэнергии (ПКЭ) в соответствии с ГОСТ 13109-97, ГОСТ Р 51317.4.15-99 и их статистической обработки;
- измерения нормированных сигналов напряжения и тока в диапазонах по ГОСТ 26.011;
- регистрации в аварийных режимах мгновенных значений измеряемых токов в диапазоне 40IH и напряжений в диапазоне 3UH;
- регистрации и обработки дискретной телесигнализации и формирования сигналов дискретного вывода;
- передачи, с метками времени, измеренных, вычисленных, зарегистрированных параметров по стандартным интерфейсам на верхний уровень системы.

#### Описание средства измерений

Преобразователь МИП-02 является микропроцессорным программируемым измерительно-вычислительным устройством, состоящим из электронного блока и встроенного в него программного обеспечения.

Основным интерфейсом для передачи данных на верхний уровень является IEEE 802.3 (Ethernet) со скоростью передачи 100 Мбит/с. Основным протоколом передачи данных является ГОСТ Р МЭК 60870-5-104-2004.

Синхронизация времени в МИП-02 осуществляется от системы GPS или ГЛОНАСС, а также средствами протокола ГОСТ Р МЭК 60870-5-104-2004.

Для конфигурирования преобразователя на месте эксплуатации используется интерфейс Ethernet, а также, для некоторых параметров, служебный интерфейс RS-232.

Рабочая конфигурация преобразователя, архив счетчика электроэнергии, статистические данные ПКЭ и другие служебные данные хранятся в энергонезависимой памяти преобразователя.

Питание преобразователя осуществляется от однофазной сети 220В/50 Гц или от сети постоянного тока с номинальным напряжением 220 В. По согласованию с заказчиком, преобразователи могут выпускаться в исполнении с питанием 24 В постоянного тока.

Для установки в шкафы и стойки преобразователи выпускаются в корпусе «Евромеханика» 19 дюймов 1U (2U) по ГОСТ 28601.3 (МЭК 60297). Преобразователи для настенной установки или установки на 35-мм рейку DIN 50022 выпускаются с габаритными размерами, выбранными разработчиком.

Преобразователь МИП-02 может иметь в своем составе следующие измерительные каналы:

ТИ100В – канал телеизмерения (ТИ), предназначенный для измерения действующего значения переменного напряжения с номинальными напряжениями (Uн) 57,7 В и 100,0 В в

соответствии с ГОСТ Р 52320-2005.

ТИ220В – канал телеизмерения (ТИ), предназначенный для измерения действующего значения переменного напряжения с номинальными напряжениями (Uн) 200,0 В и 220,0 В в соответствии с ГОСТ Р 52320-2005.

ТИ5А – канал телеизмерения (ТИ), предназначенный для измерения действующего значения переменного тока с номинальными токами (Ін) 1 A и 5 A в соответствии с ГОСТ Р 52320-2005.

U0100B — канал телеизмерения (ТИ), предназначенный для измерения напряжения нулевой последовательности 3U0 в трехфазной сети с номинальными напряжениями 57,7 В и 100.0 В.

U0220B — канал телеизмерения (ТИ), предназначенный для измерения напряжения нулевой последовательности 3U0 в трехфазной сети с номинальными напряжениями 200,0 В и 220,0 В.

IN5A – канал телеизмерения (ТИ), предназначенный для измерения тока нулевого провода (IN) в трехфазной сети с номинальными токами 1 A и 5 A.

РАС100В – канал регистрации аварийных событий (РАС), предназначенный для измерения действующего значения напряжения и регистрации его мгновенных значений в диапазоне 3Uн для номинальных напряжений 57,7 В и 100,0 В.

РАС1А – канал регистрации аварийных событий (РАС), предназначенный для измерения действующего значения тока и регистрации его мгновенных значений в диапазоне 40Iн с номинальным током 1 А.

PAC5A – канал регистрации аварийных событий (PAC), предназначенный для измерения действующего значения тока и регистрации его мгновенных значений в диапазоне 40Iн с номинальным током 5 A.

Преобразователи МИП-02 различных вариантов исполнения имеют следующее обозначение: «Преобразователь МИП-02XXX-xx.xx ЛКЖТ2.721.004 ТУ».

Таблица 1 – Расшифровка условного обозначения МИП-02ХХХ-хх.хх

| МИП-02 | X   | X   | X   | -xx.xx |                                                   |
|--------|-----|-----|-----|--------|---------------------------------------------------|
|        | нет |     |     |        | для исполнений УХЛ4 (от 5 до 55 °C)               |
|        | E   |     |     |        | для исполнений УХЛЗ.1 (от минус 30 до плюс 60 °C) |
|        |     | нет |     |        | ПКЭ не измеряются                                 |
|        |     | A   |     |        | ПКЭ с расширенным набором                         |
|        |     | T   |     |        | ПКЭ по ГОСТ 13109-97, ГОСТ Р 51317.4.15-99        |
|        |     |     | нет |        | IEEE 802.3 (Ethernet) – 1 шт.                     |
|        |     |     | С   |        | IEEE 802.3 (Ethernet) – 2 шт.                     |
|        |     |     |     | -XX.XX | согласно таблицам (Таблица 2, Таблица 3)          |

Перечень исполнений преобразователей представлен в таблицах 2 -3 Таблица 2 – Исполнения МИП-02XXX-3x.xx

| Характеристики                                                             | Исполнения МИП-02XXX-3x.xx |             |             |             |             |  |
|----------------------------------------------------------------------------|----------------------------|-------------|-------------|-------------|-------------|--|
| <b>Характеристики</b>                                                      | -30.02                     | -30.10      | -30.11      | -30.30      | -30.31      |  |
| Каналы измерения напряжения типа ТИB, количество и тип                     | 3<br>ТИ100В                | 3<br>ТИ100В | 3<br>ТИ220В | 3<br>ТИ100В | 3<br>ТИ220В |  |
| Канал измерения напряжения нулевой последовательности U0, количество и тип |                            | 1<br>U0100B | 1<br>U0220B | 1<br>U0100B | 1<br>U0220B |  |
| Каналы измерения тока типа ТИ_А, количество и тип                          | 3<br>ТИ5А                  | 3<br>ТИ5А   | 3<br>ТИ5А   | 3<br>ТИ5А   | 3<br>ТИ5А   |  |
| Канал измерения тока нулевого провода IN, количество и тип                 | _                          | 1<br>IN5A   | 1<br>IN5A   | 1<br>IN5A   | 1<br>IN5A   |  |
| Каналы ТС ~/= 24В                                                          | _                          |             |             | 24          |             |  |
| Каналы ДВ ~/= 24 B                                                         | 1                          |             |             | 2           |             |  |
| Подключение к GPS/ГЛОНАСС                                                  | есть                       |             |             | есть        |             |  |
| Сервисный интерфейс                                                        | RS-232                     |             |             | RS-232      |             |  |
| Питание                                                                    | ~/= 220 B                  |             |             | ~/= 220 B   |             |  |
| Степень защиты                                                             | IP40                       |             | IP54        |             |             |  |
| Конструкция                                                                | п.к. 160×16                | 0×77 мм     |             | п.к. 269×27 | 0×140 мм    |  |



Рисунок 1 - Общий вид исполнений МИП-02XXX-30.0X и МИП-02XXX-30.1X



Рисунок 2 - Общий вид исполнения МИП-02XXX-30.3X



Рисунок 3 - Общий вид исполнения МИП-02XXX-4X.XX

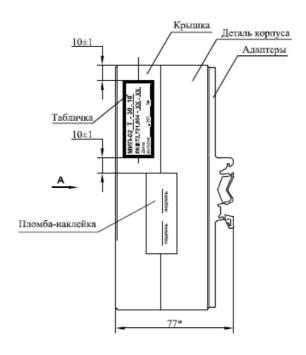



Рисунок 4 - Схема установки пломб на преобразователе МИП-02 исполнений МИП-02XXX-30.0X и МИП-02XXX-30.1X

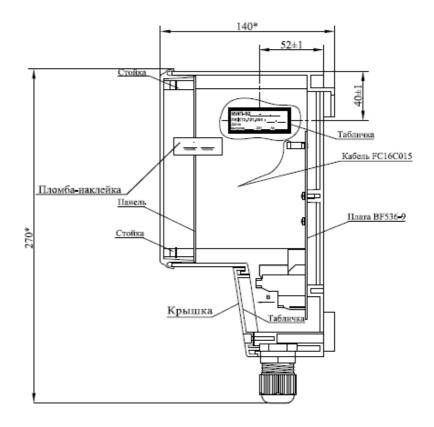



Рисунок 5 - Схема установки пломб на преобразователе МИП-02 исполнения МИП-02XXX-30.3X

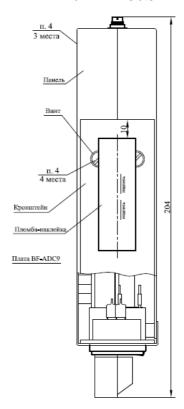



Рисунок 6 - Схема установки пломб на преобразователе МИП-02 исполнения МИП-02XXX-4X.XX

Таблица 3 - Исполнения МИП-02XXX-4x.xx

| Характеристики                                                                                           | Исполнения МИП-02XXX-4x.xx                                  |                  |                  |              |              |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------|------------------|--------------|--------------|
| Ларактеристики                                                                                           | -40.01                                                      | -41.01           | -41.02           | -42.01       | -42.02       |
| Каналы измерения напряжения типа ТИВ, количество и тип                                                   | 6<br>ТИ100В                                                 | 3<br>ТИ100В      | _                | 3<br>ТИ100В  | _            |
| Каналы измерения тока типа<br>ТИ_А, количество и тип                                                     | 6<br>ТИ5А                                                   | 3<br>ТИ5А        | _                | 3<br>ТИ5А    |              |
| Каналы измерения напряжения типа РАСВ, количество и тип                                                  |                                                             | 3<br>PAC100<br>B | 6<br>PAC100<br>B | 3<br>PAC100B | 6<br>PAC100B |
| Каналы измерения тока типа<br>РАС_А, количество и тип                                                    | _                                                           | 3<br>PAC5A       | 6<br>PAC5A       | 3<br>PAC1A   | 6<br>PAC1A   |
| Каналы ТС ~/= 24B(220 B) с КУ<br>типов FM-8DI-1(2) или аналого-<br>вого ввода с КУ типов FM-<br>8AINU(B) |                                                             |                  |                  |              |              |
| Подключение к GPS/ГЛОНАСС                                                                                | есть                                                        |                  |                  |              |              |
| Сервисный интерфейс                                                                                      | RS-232                                                      |                  |                  |              |              |
| Питание                                                                                                  | ~/= 220 B                                                   |                  |                  |              |              |
| Степень защиты                                                                                           | IP40                                                        |                  |                  |              |              |
| Конструкция                                                                                              | «Евромеханика» 19 дюймов 1U, по ГОСТ 28601.2<br>(МЭК 60297) |                  |                  |              |              |

#### Программное обеспечение

Все преобразователи МИП-02XXX содержат встроенное микропрограммное обеспечение (МПО), которое обеспечивает их надежную работу, прием и передачу данных, измерение и вычисление требуемого набора параметров согласно техническим условиям (ТУ).

Встроенное в преобразователи МИП-02 программное обеспечение представляет собой целостный файл расширения \*.ldr, который не поддается преднамеренным или непреднамеренным изменениям.

В зависимости от исполнения преобразователи МИП-02XXX имеют один или два физических интерфейса IEEE802.3 (Ethernet 10/100Base-T4) для передачи данных и интерфейс по RS-422 для связи с приемником GPS или ГЛОНАСС.

Интерфейс Ethernet обеспечивает обмен данными на скорости 100 Мбит/с.

Интерфейс RS-422 должен обеспечивает скорость приема/передачи не менее 38400 бит/сек. Для связи с приемником системы GPS используется протокол TSIP. Для связи с приемником системы ГЛОНАСС используется протокол BINARYt. Требуемые рабочие настройки устанавливаются при конфигурировании и хранятся в энергонезависимой памяти.

Для наладки и конфигурирования преобразователи МИП-02XXX имеют служебный интерфейс RS-232 или USB.

Преобразователи имеют флэш-память объемом не менее 1 Мбайт для хранения рабочей конфигурации, архивов счетчиков энергии, калибровочных коэффициентов измерительных каналов и другой необходимой информации.

Обеспечена возможность автоматического тестирования аппаратной части преобразователей через служебный интерфейс RS-232 или USB.

Обеспечена возможность передачи диагностического сообщения по сети Ethernet.

Инициализация и измерения по включению питания.

Интервал времени от включения питания до завершения инициализации и начала выполнения измерений не более 3 с.

#### Основные функции МПО:

- измерение и вычисление параметров трехпроводных и четырехпроводных электрических сетей переменного трехфазного тока с номинальной частотой 50 Гц;
- измерение и вычисление электрической энергии согласно требованиям ГОСТ Р 52323-2005 для счетчиков активной энергии класса 0,2S и требованиям ГОСТ Р 52425-2005 для счетчиков реактивной энергии класса 1;
- измерение и регистрацию показателей качества электрической энергии согласно требованиям ГОСТ 13109-97, ГОСТ Р 51317.4.15-99, ГОСТ Р 51317.4.7-2008, ГОСТ Р 51317.4.30-2008;
  - прием команд (запросов от управляющего ПО);
  - передача данных одному или нескольким компьютерам верхнего уровня системы;
  - и др.

Таблица 4 - Идентификационные данные программного обеспечения

| Наименование       | Идентификацион-  | Номер версии   | Цифровой      | Алгоритм    |
|--------------------|------------------|----------------|---------------|-------------|
| программного       | ное наименование | (идентификаци- | идентифика-   | вычисления  |
| обеспечения        | программного     | онный номер)   | тор про-      | цифрового   |
|                    | обеспечения      | программного   | граммного     | идентифика- |
|                    |                  | обеспечения    | обеспечения   | тора про-   |
|                    |                  |                | (контрольная  | граммного   |
|                    |                  |                | сумма испол-  | обеспечения |
|                    |                  |                | няемого кода) |             |
| mip 02 – 536 - v0- | mip02-536-v0-2-  | 0-2-273        | 8BF9          | CRC-16      |
| 2-273.ldr          | 273              |                |               |             |
|                    |                  |                |               |             |

Метрологические характеристики преобразователей МИП-02, указанные в таблицах 5 и 6, нормированы с учетом ПО.

Уровень защиты ПО соответствует уровню С по МИ 3286-2010.

#### Метрологические и технические характеристики

Основные метрологические и технические характеристики преобразователей МИП-02 приведены в таблицах 5-13.

Таблица 5 – Характеристики каналов измерений напряжения ТИ и РАС

|                                                                     | Типы каналов измерений напряжения |                 |                 |                 |                 |  |
|---------------------------------------------------------------------|-----------------------------------|-----------------|-----------------|-----------------|-----------------|--|
| Параметр                                                            | ТИ100В                            | ТИ220В          | U0100B          | U0220B          | PAC100<br>B     |  |
| Диапазон измерений напряжения, В                                    | от 5 до<br>170                    | от 15 до<br>380 | от 0,1 до<br>40 | от 0,1 до<br>90 | от 15 до<br>380 |  |
| Пределы допускаемой основной относительной погрешности $\delta$ , % | ± 0,15                            | ± 0,15          | ± 0,2           | ± 0,2           | ± 0,2           |  |
| Допускаемый температурный коэффициент, % / °C                       | ± 0,02                            | ± 0,02          | ± 0,01          | ± 0,02          | ± 0,02          |  |
| Перегрузка, длительно (в течение 1 с)                               | 200<br>(250)                      | 440<br>(500)    | 200<br>(250)    | 440<br>(500)    | 440<br>(500)    |  |
| Мощность потребления входной цепью, не более, B·A (напряжение, B)   | 0,2 (100)                         | 0,2 (220)       | 0,1 (40)        | 0,1 (90)        | 0,2 (220)       |  |
| Сопротивление изоляции, не менее,<br>МОм                            | 100 (5)[1]                        |                 |                 |                 |                 |  |
| Электрическая прочность изоляции, не менее                          | 2000 В переменного тока           |                 |                 |                 |                 |  |
| Сечение внешних присоединительных проводов, мм <sup>2</sup>         | от 0,5 до 2                       | от 0,5 до 2,0   |                 |                 |                 |  |

Примечание [1] — В скобках указана величина сопротивления для крайних значений температуры и влажности.

Таблица 6 – Характеристики каналов измерений тока ТИ и РАС

| Параметр                                                        | Типы каналов измерений тока           |                                  |                  |                 |  |
|-----------------------------------------------------------------|---------------------------------------|----------------------------------|------------------|-----------------|--|
| Параметр                                                        | ТИ5А                                  | IN5A                             | PAC1A            | PAC5A           |  |
| Диапазон измерений, А                                           | от $0,01I_{\rm H}$ до $1,42I_{\rm H}$ | от 0,01 до<br>0,25I <sub>H</sub> | от 0,4 до<br>40A | от 2 до<br>200А |  |
| Стартовый ток (чувствительность), А                             | $0,001I_{H}$                          |                                  | _                | _               |  |
| Пределы основной относительной погрешности $\delta$ , %         | ± 0,2 ( ±0,4)<br>[1]                  | ± 0,2 ( ±0,4)<br>[1]             | ± 1,0            | ± 1,0           |  |
| Допускаемый ТК, % / °C                                          | ± 0,02                                | ± 0,02                           | ± 0,03           | ± 0,03          |  |
| Перегрузка, длительно (в течение 1 с),<br>А                     | 10 (100)                              | 10 (100)                         | 10 (100)         | 15 (250)        |  |
| Мощность потребления входной це-<br>пью, не более, В·А (ток, А) | 0,2 (5)                               | 0,2 (5)                          | 0,2 (10)         | 0,2 (10)        |  |
| Сопротивление изоляции, не менее,<br>МОм                        | 100 (5)                               |                                  |                  |                 |  |
| Электрическая прочность изоляции, не менее                      | 2000 В переменного тока               |                                  |                  |                 |  |
| Сечение внешних присоединительных проводов, мм <sup>2</sup>     | от 1,0 до 4,0                         |                                  |                  |                 |  |

Примечание [1] — В скобках указан предел погрешности  $\delta$ , для токов в диапазоне  $0.01I_H \leq I < 0.051I_H$ .

Таблица 7 – Характеристики каналов измерений мощности и энергии

| Параметры активной мощности, энергии [1]                         |                                 | Параметры реактивной мощности, энергии [1] |                                                                  |                                 |           |
|------------------------------------------------------------------|---------------------------------|--------------------------------------------|------------------------------------------------------------------|---------------------------------|-----------|
| Диапазон                                                         | cos φ                           | δ,<br>в %                                  | Диапазон                                                         | sin φ                           | δ,<br>в % |
| $0,001I_{H}$                                                     | 1                               | ±20                                        | $0,001I_{H}$                                                     | 1                               | ±20       |
| $\begin{array}{c} 0.01 I_{H} \leq I < \\ 0.05 I_{H} \end{array}$ | 1                               | ±0,4                                       | $\begin{array}{c} 0.02 I_{H} \leq I < \\ 0.05 I_{H} \end{array}$ | 1                               | ±0,7      |
| $\begin{array}{c} 0.05 I_{H} \leq I < \\ 1.2 I_{H} \end{array}$  | 1                               | ±0,2                                       | $\begin{array}{c} 0.05I_{H} \leq I < \\ 1.2I_{H} \end{array}$    | 1                               | ±0,5      |
| $\begin{array}{c} 0.02I_{H} \leq I \leq \\ 0.1I_{H} \end{array}$ | $0.5 \le  \cos \varphi  < 1$    | ±0,5                                       | $\begin{array}{c} 0.05 I_{H} \leq I < \\ 0.1 I_{H} \end{array}$  | $0.5 \leq  \sin \varphi  < 1$   | ±0,5      |
| $0.1I_H \le I \le 1.2I_H$                                        | $0.5 \le  \cos \varphi  < 1$    | ±0,3                                       | $0.1I_H \leq I \leq 1.2I_H$                                      | $0.5 \le  \sin \varphi  < 1$    | ±0,5      |
| $0.1I_{H} \leq I \leq 1.2I_{H}$                                  | $0.25 \le  \cos \varphi  < 0.5$ | ±0,5                                       | $\begin{array}{c} 0.05I_{H} \leq I \leq \\ 1.2I_{H} \end{array}$ | $0.25 \le  \sin \varphi  < 0.5$ | ±0,7      |

Допускаемый температурный коэффициент каналов измерения мощности в диапазоне рабочих температур - 0.04% / °C. (% от  $\delta$ )

Примечание [1] — Для измерения мощности и энергии, с указанными метрологическими характеристиками, используются каналы типов ТИ100В, ТИ220В, ТИ5А. В зависимости от исполнения предел допускаемой основной относительной погрешности нормируется при номинальном напряжении  $U_H = 100\ B,\ U_H = 57\ B$  или  $U_H = 220\ B$  для диапазонов тока с номинальными значениями  $I_H = 5\ A$  и  $I_H = 1\ A$ .

Таблица 8 – Характеристики каналов измерений фазового угла между током и напряжением основной частоты

| Диапазон<br>измерений | Пределы допускаемой основной абсолютной (Δ) погрешности                 |
|-----------------------|-------------------------------------------------------------------------|
| ±180°                 | $\pm 0,1^{ m o}$ при $0,01{ m I}_{ m H} \le { m I} < 0,05{ m I}_{ m H}$ |
| ±100                  | $\pm 0,05^{ m o}$ при $0,05{ m I}_{ m H} \le { m I} < 1,2{ m I}_{ m H}$ |

Таблица 9 – Характеристики каналов измерений частоты основной гармоники

| Диапазон<br>измерений | Пределы допускаемой основной абсолютной (Δ) погрешности |
|-----------------------|---------------------------------------------------------|
| от 42 до 69 Гц        | ±0,001 Гц при синхронизации от системы GPS (ГЛОНАСС)    |
| 01 42 д0 09 1 ц       | ±0,002 Гц без синхронизации от системы GPS (ГЛОНАСС)    |

Таблица 10 – Характеристики каналов измерений угла между фазными напряжениями основной частоты

| Диапазон<br>измерений | Пределы допускаемой основной абсолютной (Δ) погрешности |
|-----------------------|---------------------------------------------------------|
| ±180°                 | ±0,05°                                                  |

Таблица 11 – Характеристики каналов измерений симметричных составляющих

| Параметр                                                                                                   | Диапазон<br>измере-<br>ний | Пределы основной допускаемой погрешности: приведенной ( $\gamma$ ), %; относительной ( $\delta$ ), %.                                      |
|------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Канал напряжения типа ТИ: напряжение нулевой $U_0$ , прямой $U_1$ , обратной $U_2$ последовательностей, В  | 0 - U max<br>[1]           | $\pm 0,2$ ( $\gamma$ ), при ( $U_0,U_1,U_2$ ) $< 5$ $\pm 0,2$ ( $\delta$ ), при ( $U_0,U_1,U_2$ ) $\geq 5$                                 |
| Канал напряжения типа РАС: напряжение нулевой $U_0$ , прямой $U_1$ , обратной $U_2$ последовательностей, В | 0 - U max<br>[1]           | $\pm 0,2$ ( $\gamma$ ), при ( $U_0,U_1,U_2$ ) $< 5$ $\pm 0,2$ ( $\delta$ ), при ( $U_0,U_1,U_2$ ) $\geq 5$                                 |
| Канал тока типа ТИ: ток нулевой $I_0$ , прямой $I_1$ , обратной $I_2$ последовательностей, $A$             | 0 - I max<br>[1]           | $\pm 0,005$ (у), при ( $I_0,I_1,I_2$ ) $< 0,05I_{\rm H}$ $\pm 0,2$ ( $\delta$ ), при ( $I_0,I_1,I_2$ ) $\geq 0,051I_{\rm H}$               |
| Канал тока типа РАС ток нулевой $I_0$ , прямой $I_1$ , обратной $I_2$ последовательностей, $A$             | 0 - I max<br>[1]           | $\pm 0.03$ ( $\gamma$ ), при ( $I_0$ , $I_1$ , $I_2$ ) $< 0.25 I_H$ $\pm 1.0$ ( $\delta$ ), при ( $I_0$ , $I_1$ , $I_2$ ) $\geq 0.251 I_H$ |

Примечание [1] — Верхний предел диапазона измерения действующего значения напряжения или тока.

Таблица 12 – Характеристики каналов измерений ПКЭ для исполнений МИП-02XAX-хх.хх

| Показатель КЭ, единица измерения                                               | Диапазон<br>измерений | Пределы основной допускаемой погрешности: абсолютной ( $\Delta$ ), %; относительной ( $\delta$ ), %.                                                               |
|--------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Установившееся отклонение напряжения $\delta$ Uy, %                            | от 10 до<br>170       | ±0,2 (Δ)                                                                                                                                                           |
| Размах изменения напряжения δUt, %                                             | от 0,3 до 80          | ±8,0 (Δ)                                                                                                                                                           |
| Доза фликера, кратковременная $P_{St}$ , длительная $P_{Lt}$ , отн. ед.        | от 0,2 до 20          | ±5 (δ)                                                                                                                                                             |
| Коэффициент искажения синусоидальности напряжения $K_U$ , %                    | от 0,1 до<br>620 [1]  | $\pm 0,05$ ( $\Delta$ ), при $K_{U}$ $<$ 2,5 $\pm 2,0$ ( $\delta$ ), при $K_{U}$ $\geq$ 2,5                                                                        |
| Коэффициент n-ой (2 - 40) гармонической составляющей напряжения $K_{U(n)}$ , % | от 0,05 до<br>100     | $\pm 0.03$ ( $\Delta$ ), при $K_U < 3$ $\pm 1.0$ ( $\delta$ ), при $K_U \ge 3$                                                                                     |
| Фазовый угол n-ой (2 - 40) гармонической составляющей напряжения $\Phi_{U(n)}$ | ±180°                 | $\pm 3^{\circ}$ ( $\Delta$ ), при $0.2 \le K_U(n) < 1$ $\pm 1^{\circ}$ ( $\Delta$ ), при $1 \le K_U(n) < 2.5$ $\pm 0.5^{\circ}$ ( $\Delta$ ), при $2.5 \le K_U(n)$ |
| Коэффициент несимметрии напряжений по обратной последовательности $K_{2U}$ , % | от 0 до 25            | ±0,15 (Δ)                                                                                                                                                          |
| Коэффициент несимметрии напряжений по нулевой последовательности $K_{0U}$ , %  | от 0 до 25            | ±0,15 (Δ)                                                                                                                                                          |
| Отклонение частоты Δf, Гц                                                      | <u>±</u> 8            | $\pm 0,001; \pm 0,002 [2] (\Delta)$                                                                                                                                |

Продолжение таблицы 13

| продолжение таолицы 13                                                            |                                                                            |                                                                                                                                                                |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Показатель КЭ, единица измерения                                                  | Диапазон<br>измерений                                                      | Предел основной допускаемой погрешности: абсолютной ( $\Delta$ ), %; относительной ( $\delta$ ), %.                                                            |  |
| Длительность провала $\Delta$ $t_\Pi$ , $c$                                       | от 0,01 до 60                                                              | ±0,01 (Δ)                                                                                                                                                      |  |
| Коэффициент временного перенапряжения $K_{\Pi EP}$ U, отн. ед.                    | от 1,1 до 1,7                                                              | ±0,01 (Δ)                                                                                                                                                      |  |
| Частота повторения изменений напряжения $F_{\delta U t}$ , (мин $^{-1}$ )         | от 0,5 до<br>4000                                                          | ±0,1 [3] (Δ)                                                                                                                                                   |  |
| Глубина провала напряжения $\delta U_\Pi$ , %                                     | от 10 до 100                                                               | ±0,3 [4] (Δ)                                                                                                                                                   |  |
| Длительность временного перенапряжения $\Delta$ $t_{\Pi EP}$ , $c$                | от 0,01 с до<br>12 ч                                                       | ±0,01 (Δ)                                                                                                                                                      |  |
| Коэффициент искажения синусоидальности кривой тока $K_{\rm I},\%$                 | от 2 до 300,<br>при<br>0,01 I <sub>H</sub> ≤ I ≤<br>0,1 I <sub>H</sub> [1] | $\pm 0,2$ ( $\Delta$ ), при $2 \le K_I < 10$ $\pm 2,0$ ( $\delta$ ), при $K_I \ge 10$                                                                          |  |
|                                                                                   | от 0,1 до 300, при $0,1\ I_H \leq I \leq 1,2\ I_H[1]$                      | $\pm 0,05$ ( $\Delta$ ), при $K_{\rm I} < 2,5$ $\pm 2,0$ ( $\delta$ ), при $K_{\rm I} \ge 2,5$                                                                 |  |
| Коэффициент n-ой (2 - 40) гармонической составляющей тока $K_{I(n)}$ , %          | от 0 до 100, при $0,01\ I_H \! \leq \! I \! \leq \! 0,1\ I_H$              | $\pm 0,1$ ( $\Delta$ ), при $2 \le K_I < 10$ $\pm 1,0$ ( $\delta$ ), при $K_I \ge 10$                                                                          |  |
|                                                                                   | от 0 до 100, при $0.1\ I_H \le I \le 1.2\ I_H$                             | $\pm 0,03$ ( $\Delta$ ), при $0,2 \le K_I(n) < 3$ $\pm 1,0$ ( $\delta$ ), при $K_I(n) \ge 3$                                                                   |  |
| Фазовый угол n-ой (2 - 40) гармонической составляющей тока $\Phi_{\mathrm{I(n)}}$ | $\pm 180^{\circ}$ , при $0.01~I_{\rm H} \leq I \leq 0.1~I_{\rm H}$         | $\pm 2^{\rm o}$ ( $\Delta$ ), при $2 \le K_{\rm I}({\rm n}) < 10$ $\pm 0.5^{\rm o}$ ( $\Delta$ ), $K_{\rm I}({\rm n}) \ge 10$                                  |  |
|                                                                                   | $\pm 180$ °, при $0.1~I_{H} \le I \le 1.2~I_{H}$                           | $\pm 5^{\circ}$ ( $\Delta$ ), при $0.2 \le K_I(n) < 1$ $\pm 1^{\circ}$ ( $\Delta$ ), при $1 \le K_I(n) < 3$ $\pm 0.5^{\circ}$ ( $\Delta$ ), при $K_I(n) \ge 3$ |  |

### Примечания:

- [1] Действующее значение измеряемого сигнала должно быть в пределах диапазона измерений.
- [2] При отсутствии сигнала PPS системы синхронизации времени (GPS, ГЛО-HACC).
  - [3] Интервал измерения 10 мин, для колебаний напряжения с формой меандра.
- [4] Погрешность нормируется для длительности провала не менее 80 мс и глубины не более 90%.

Таблица 143 – Характеристики каналов измерений ПКЭ для исполнений МИП-02ХТХ-хх.хх

| Таблица 143 – Характеристики каналов измерений ПКЭ для исполнений МИП-02XTX-xx.xx   |                                              |                                                                                                     |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|
| Показатель КЭ, единица измерения                                                    | Диапазон из-<br>мерений                      | Предел основной допускаемой погрешности: абсолютной ( $\Delta$ ), %; относительной ( $\delta$ ), %. |  |  |
| Установившееся отклонение напряжения<br>δUy, %                                      | от 10 до 170                                 | ±0,2 (Δ)                                                                                            |  |  |
| Размах изменения напряжения δUt, %                                                  | от 0,3 до 80                                 | ±8,0 (Δ)                                                                                            |  |  |
| Доза фликера, кратковременная PSt, длительная PLt, отн. ед.                         | от 0,2 до 20                                 | ±5 (δ)                                                                                              |  |  |
| Коэффициент искажения синусоидальности напряжения KU, %                             | от 0,1 до 300                                | $\pm 0.05$ ( $\Delta$ ), при KU $< 2.5$ $\pm 2.0$ ( $\delta$ ), при KU $\ge 2.5$                    |  |  |
| Коэффициент n-ой (от 2 до 40) гармонической составляющей напряжения KU(n), %        | от 0,05 до<br>100                            | $\pm 0.03$ ( $\Delta$ ), при KU $< 3$ $\pm 1.0$ ( $\delta$ ), при KU $\geq 3$                       |  |  |
| Коэффициент несимметрии напряжений по обратной последовательности K2U, % от 0 до 25 |                                              | ±0,15 (Δ)                                                                                           |  |  |
| Коэффициент несимметрии напряжений по нулевой последовательности K0U, %             | от 0 до 25                                   | ±0,15 (Δ)                                                                                           |  |  |
| Отклонение частоты Δf, Гц                                                           | ±8                                           | $\pm 0,001; \pm 0,002 (\Delta) [1]$                                                                 |  |  |
| Длительность провала Δ tП, с                                                        | от 0,01 до 60                                | ±0,01 (Δ)                                                                                           |  |  |
| Коэффициент временного перенапряжения<br>КПЕР U, отн. ед.                           | от 1,1 до 1,7                                | ±0,01 (Δ)                                                                                           |  |  |
| Частота повторения изменений напряжения $F\delta Ut$ , (мин $^{-1}$ )               | от 0,5 до<br>4000                            | ±0,1 (Δ) [2]                                                                                        |  |  |
| Глубина провала напряжения в UП, %                                                  | от 10 до 100                                 | ±0,3 (Δ) [3]                                                                                        |  |  |
| Длительность временного перенапряжения $\Delta$ tПЕР, с                             | от 0,01 с до<br>12 час                       | ±0,01 (Δ)                                                                                           |  |  |
| Коэффициент искажения синусоидально-<br>сти кривой тока KI, %                       | от 2 до 300,<br>при 0,01 IH ≤<br>I ≤ 0,1 IH  | $\pm 0.2$ ( $\Delta$ ), при $2 \le KI < 10$ $\pm 2.0$ ( $\delta$ ), при $KI \ge 10$                 |  |  |
|                                                                                     | от 0,1 до 300,<br>при 0,1 IH ≤ I<br>≤ 1,2 IH | $\pm 0.05$ ( $\Delta$ ), при KI $<$ 2,5 $\pm 2.0$ ( $\delta$ ), при KI $\ge$ 2,5                    |  |  |
| Коэффициент n-ой (от 2 до 40) гармониче-                                            | от 0 до 100,<br>при 0,01 IH ≤<br>I ≤ 0,1 IH  | $\pm 0.1$ ( $\Delta$ ), при $2 \le KI < 10$ $\pm 1.0$ ( $\delta$ ), при $KI \ge 10$                 |  |  |
| ской составляющей тока KI(n), %                                                     | от 0 до 100,<br>при 0,1 IH ≤ I<br>≤ 1,2 IH   | $\pm 0,03$ ( $\Delta$ ), при $0,2 \le KI(n) < 3$ $\pm 1,0$ ( $\delta$ ), при $KI(n) \ge 3$          |  |  |

Примечания:

<sup>[1]</sup> — При отсутствии сигнала PPS системы синхронизации времени (GPS, ГЛО-HACC).

<sup>[2] —</sup> Интервал измерения 10 мин, для колебаний напряжения с формой меандра.

<sup>[3] —</sup> Погрешность нормируется для длительности провала не менее 80 мс и глубины не более 90%.

Таблица 14 – Технические характеристики каналов ТИТ

| Параметр                                               | Тип КУ аналогового ввода          |                                   |  |
|--------------------------------------------------------|-----------------------------------|-----------------------------------|--|
| Параметр                                               | FM-8AINB                          | FM-8AINU                          |  |
| Количество каналов                                     | 8                                 | 8                                 |  |
| Входные диапазоны измерения [1]                        | $\pm$ 5 mA, $\pm$ 10 B            | 0 - 20 мА, 0 - 10 В               |  |
| Основная приведенная погрешность у, в %                | ± 0,12                            | ± 0,12                            |  |
| Допускаемый ТК, в % / °C (% от δ) [2]                  | ± 0,01                            | ± 0,01                            |  |
| Входное сопротивление канала тока, не более,           | 30                                | 30                                |  |
| Ом                                                     |                                   |                                   |  |
| Входное сопротивление канала напряжения, не менее, кОм | 50                                | 50                                |  |
| Перегрузка, длительно (в течение 1 с)                  | ±0,1 A (±0,2 A),<br>±30 B (±70 B) | ±0,1 A (±0,2 A),<br>±30 B (±70 B) |  |

#### Примечания:

- [1] Диапазон задается индивидуально для каждого канала путем установки замыкателей.
- [2] Допускаемый температурный коэффициент (ТК) в диапазоне рабочих температур за пределами нормальных.

Технические характеристики преобразователей МИП-02.

Напряжение питания от однофазной сети  $220\,\mathrm{B}$  переменного тока частотой  $50\,\Gamma\mathrm{u}$  или постоянного тока  $220\,\mathrm{B}$ .

Потребляемая мощность не более 20 В-А.

Преобразователи исполнений МИП-02XXX-4x.xx выпускаются в корпусе «Евромеханика» 19 дюймов 1U, по ГОСТ 28601.3 (МЭК 60297), габариты не более  $483 \times 45 \times 205$  мм.

Преобразователи исполнений МИП-02XXX-3x.xx выпускаются в пластмассовом или металлическом корпусе для настенной установки или на 35-мм рейку DIN 50022 с габаритными размерами согласно конструкторской документации.

Преобразователи МИП-02XXX имеют независимые от внешнего питания часы реального времени.

Часы обеспечивают:

- отсчет времени при выключенном питании в течение, не менее 24 ч;
- стабильность хода, при выключенном питании, не хуже ±5 с в сутки;
- стабильность хода, при включенном питании, без подстройки по сигналу PPS, не хуже  $\pm 2$  с в сутки.

Масса не более 3-х кг.

Климатическое исполнение по ГОСТ 15150 УХЛ4, УХЛ3.1.

Нормальные условия применения:

- температура окружающей среды от 15 до 35 °C;
- относительная влажность воздуха от 45 до 80 %;
- атмосферное давление от 84 до 106,7 кПа;
- напряжение питания переменного тока от 210 до 230 B, частота от 49 до 51  $\Gamma$ ц, или постоянного тока от 210 до 230 B.

Рабочие условия применения:

- температура окружающего воздуха для исполнений УХЛ4 в диапазоне от 5 до 55 °C, для исполнений УХЛ3.1 в диапазоне от минус 30 до плюс 60 °C;
  - относительная влажность воздуха не более 80 % при 25 °C, без конденсации влаги;
  - атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.);
- тип атмосферы по ГОСТ 15150 не хуже типа II (промышленная, не содержащая токопроводящей пыли, невзрывоопасная);

IP54.

- напряжение питания переменного тока от 110 до 242 B, частота от 47 до 63  $\Gamma$ ц, или постоянного тока от 160 до 340 B.

Предельные рабочие условия эксплуатации:

диапазон температур для исполнения УХЛ4 от 1 до 55 °C;

диапазон температур для исполнения УХЛЗ.1 от минус 30 до плюс 60 °C;

относительная влажность, без конденсации влаги, при 25 °C - 98%;

атмосферное давление в диапазоне от 73,3 до 106,7 кПа (от 550 до 800 мм рт.ст.).

Степень защиты по ГОСТ 14254 (МЭК 60529):

исполнения МИП-02XXX-30.0x, -30.1x, -31.xx, -4x.xx IP40;

исполнения МИП-02XXX-30.3x

Стойкость к внешним воздействующим механическим факторам по ГОСТ 17516.1-90:

группа механического исполнения М40;

устойчивость к вибрации частотой от 0,5 до 100 Гц, с ускорением до 0,5g;

устойчивость к одиночным ударам длительностью от 2 до 20 мс, с ускорением до 3 g.

Средний срок службы, с проведением ремонта, не менее 20 лет.

Средняя наработка на отказ не менее 100 000 ч.

По требованиям безопасности СИ соответствует ГОСТ Р 52319-2005 (МЭК 61010-1:2001).

По защите от поражения электрическим током, в соответствии с ГОСТ 12.2.007.0, СИ соответствует классу «I». СИ имеет заземляющий контакт разъёма питания. Значение сопротивления между каждой металлической нетоковедущей частью изделия доступной прикосновению, которая может стать опасной для жизни, и заземляющим контактом разъёма питания не превышает 0,1 Ом.

#### Знак утверждения типа

наносится путем установки на корпус преобразователя металлографической таблички (или методом шелкографии) и на титульные листы эксплуатационной документации типографским методом.

#### Комплектность

В комплект поставки входят:

- преобразователь МИП-02XXX-xx.xx соответствующего исполнения 1 шт.;
- принадлежности согласно ЛКЖТ2.721.00X-XX.XX ФО
- интерфейсный кабель RS-232

1 шт.

1 комплект:

Комплект эксплуатационных документов по ГОСТ2.601-2006 в составе:

- руководство по эксплуатации (РЭ) ЛКЖТ2.721.004 РЭ;
- формуляр (ФО) ЛКЖТ2.721.004 ФО;
- методика поверки (МИ) ЛКЖТ2.721.004 МИ.

#### Поверка

осуществляется по документу ЛКЖТ2.721.004 МИ «Преобразователь измерительный многофункциональный МИП-02XXX. Методика поверки», утвержденному ФГУП «ВНИИМС» 15.02.2011 г.

Перечень основного и вспомогательного оборудования для поверки:

Таблица 15 – Эталоны и средства измерений

#### Наименование, тип

Ф4103-М1. Измеритель сопротивления цепи заземления

Мегомметр  $\Phi$ -4102/2. Испытательное напряжение до 2500 B, измерение сопротивления изоляции от 1 до 1000 МОм.

Образцовый эталонный трехфазный ваттметр-счетчик ЦЭ6802.

Класс точности измерений: активной мощности  $\pm 0.05\%$ ; реактивной мощности  $\pm 0.1\%$ .

Многофункциональный калибратор переменного напряжения и тока «Ресурс-К2».

Погрешность воспроизведения напряжения  $\pm[0.05 + 0.01(|U_H / U - 1|)]$ .

Погрешность воспроизведения тока  $\pm [0.05 + 0.01(|IH / I - 1|)]$ .

Калибратор FLUKE 5520A

Воспроизведение переменного напряжения до 1000 В, тока от 0 до 20 А.

Погрешность воспроизведения ±0,06%.

Эталон-калибратор электрической мощности FLUKE 6100A/E/80A

Воспроизведение переменного напряжения до 1000 В, тока от 0 до 80 А.

Воспроизведение эталонных сигналов для определения ПКЭ, проверки счетчиков энергии.

Частотомер НР53131А.

Диапазон измерения фазы от 0 до 360°. Разрешающая способность 10 нс. Погрешность измерения частоты 50  $\Gamma$ ц  $\pm 0,0002$ %.

Калибратор токов и напряжений ПЗ20. Диапазон воспроизведения:

напряжения от 0 до 10 B, тока от 0 до 5 мA, от 0 до 20 мA. Погрешность  $\pm$  0,01%,

#### Сведения о методиках (методах) измерений

Метод измерений приведен в Руководстве по эксплуатации на преобразователи измерительные многофункциональные МИП-02XXX ЛКЖТ2.721.004 РЭ.

# Нормативные и технические документы, устанавливающие требования к преобразователям измерительным многофункциональным МИП-02

- 1) ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
- 2) ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.
- 3) ГОСТ Р 51317.4.15-99 Совместимость технических средств электромагнитная. Фликкерметр. Требования и методы испытаний
- 4) ГОСТ Р 52320-2005 Аппаратура для измерения электрической энергии переменного тока. Общие требования и условия испытаний. Часть 11. Счетчики электрической энергии.
- 5) ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 6) ГОСТ Р 52425-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

- 7) ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.
- 8) ЛКЖТ2.721.004 ТУ Преобразователи измерительные многофункциональные МИП-02XXX. Технические условия.

# Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта;
- осуществление торговли и товарообменных операций;
- выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям;

#### Изготовитель

Закрытое акционерное общество «РТСофт» (ЗАО "РТСофт")

Почтовый адрес: Россия, 105037, г. Москва, а/я 158

Юридический адрес: 142432 Московская обл.

г. Черноголовка, Северный проезд, д.1

Тел. (495) 742-68-28, Факс.: (495) 967-15-05

e-mail: rtsoft@rtsoft.msk.ru

#### Испытательный центр

ГЦИ СИ ФГУП «ВНИИМС»

Адрес: 119361, Москва, ул. Озерная, 46

Тел.: 8 (495) 437 55 77 Факс: 8 (495) 437 56 66

Электронная почта: office@vniims.ru

Аттестат аккредитации № 30004-08 от 27.06.2008 года.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

| « | >> | 2011 г. |
|---|----|---------|

Е.Р.Петросян