

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.32.004.A № 43849

Срок действия до 16 сентября 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Термопреобразователи с унифицированным выходным сигналом УТП, УТС, УТП Exi, УТС Exi, УТП Exd, УТС Exd

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью Научное-производственное объединение "Вакууммаш" (ООО НПО "Вакууммаш"), г.Ижевск

РЕГИСТРАЦИОННЫЙ № 47757-11

ДОКУМЕНТ НА ПОВЕРКУ **МП 47757-11**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 16 сентября 2011 г. № 4992

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Е.Р.Петросян
Федерального агентства		
	""	2011 г.

№ 001827

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Термопреобразователи с унифицированным выходным сигналом УТП, УТС, УТП Exi, УТС Exi, УТП Exd, УТС Exd

Назначение средства измерений

Термопреобразователи с унифицированным выходным сигналом УТП, УТС, УТП Ехі, УТС Ехі, УТП Ехі

Описание средства измерений

 Π У представляет собой первичный преобразователь температуры (Π П) с вмонтированным непосредственно в его клеммной головке измерительным преобразователем (Π П).

Принцип действия ТПУ зависит от применяемого ПП:

- для моделей УТС (Exi, Exd) он основан на зависимости электрического сопротивления чувствительного элемента ПП от температуры;
- для моделей УТП (Exi, Exd) он основан на зависимости выходной термоэлектродвижущей силы чувствительного элемента (термопары) от температуры спая и материалов термопары. Далее выходной сигнал от ПП (термоэлектродвижущая сила или электрическое сопротивление) непрерывно преобразуется ИП в унифицированный токовый сигнал пропорциональный измеренной температуре.
- В ТПУ используют ИП по ТУ 4211-033-39375199-10 с гальванической связью между входными и выходными цепями и обеспечивающие:
 - линейную зависимость выходного тока от измеряемой температуры;
 - компенсацию температуры «холодного спая» термопар.

Общепромышленные погружаемые ТПУ имеют модели УТП 104...; УТС 104...; УТП 106...; УТС 106...; УТП 108...; УТП 109...; УТП 109...; УТП 204...; УТП 206...; УТП 232....

Взрывозащищенные погружаемые ТПУ с видом взрывозащиты «искробезопасная электрическая цепь і» по ГОСТ Р 51330.10-99 имеют модели УТП 104Ехі...; УТС 104Ехі...; УТП 106Ехі...; УТС 106Ехі...; УТП 108Ехі...; УТП 109Ехі...; УТП 204Ехі...; УТП 204Ехі...; УТП 232Ехі...

Взрывозащищенные погружаемые ТПУ с видом взрывозащиты «взрывонепроницае-мая оболочка» по ГОСТ Р 51330.1-99 имеют модели УТП 104Exd...; УТС 104Exd...; УТС 104Exd...; УТС 106Exd...; УТС 108Exd...; УТС 109Exd...; УТС 109Exd...; УТП 204Exd...; УТП 206Exd...; УТП 232Exd...

Модели ТПУ имеют исполнения, отличающиеся друг от друга по диапазону измеряемых температур, по типу чувствительных элементов (далее – ЧЭ), по конструкции клеммной головки, по материалу защитного корпуса, по диаметру защитной арматуры, по конструкции кабельных вводов и установочных элементов.

ЧЭ для УТС выполнены из медного либо платинового микропровода, либо на основе напыленного платинового терморезистора, а для УТП – из термопарного кабеля с НСХ типов «К», «L», «N» по Γ OCT P 8.585-2001.

Установочные элементы для крепления ТПУ представляют собой либо штуцер с резьбой M20x1,5, M27x2, M33x2, K 3 /4, K 1, K 1 /2, G 1 /2 (подвижный, неподвижный), либо неподвижный фланец.

Защитная арматура ТПУ выполнена на основе нержавеющих или жаропрочных сталей. Она с одного конца либо завальцована, либо имеет приварное дно, а с другого её конца установлена клеммная головка. У моделей ТПУ модификаций ...232... защитная арматура имеет керамическую погружную часть.

Диаметр защитной арматуры от 6 мм до 20 мм. Диаметр керамической части защитной арматуры -12 мм. Клеммная головка выполнена из алюминиевого сплава.

ИП выполнен в виде отдельного блока и установлен в клеммной головке. ИП имеет клеммы для подключения первичного преобразователя и клеммы для подключения источника питания и нагрузки.

Фото общего вида ТПУ

Термопреобразователи с унифицированным выходным сигналом УТП, УТС общепромышленного назначения

Термопреобразователи с унифицированным выходным сигналом УТП Exd, УТС Exd взрывозащищенного исполнения

Термопреобразователи с унифицированным выходным сигналом УТП Exi, УТС Exi взрывозащищенного исполнения

Метрологические и технические характеристики

Метрологические характеристики ТПУ, в зависимости от исполнений, соответствуют значениям, приведенным в таблице:

	Условное	Пределы допускаемой		
Тип ТПУ	обозначение	Диапазон	основной приведенной	
	HCX	измерений	погрешности ИП	
	первичного	температуры ИП,	в интервале	
	преобразователя	°C	%	температур, °С
	температуры(*)	C	70	remneparyp, c
УТС УТС Exi УТС Exd	100М	-50+50	±0,25	во всех диапазонах
		0+100		
		0+150		
		0+180		
	100П Pt100	-50+50		
		0+100		
		0+200		
		0+300		
		0+400		
		0+500		
		0+300	$\pm 0,5$	0+300
УТП УТП Exi УТП Exd		0+500	$\pm 0,5$	св.+150+500
			$\pm 1,0$	0+150
		0+600	$\pm 0,5$	св.+150+600
	К		±1,0	0+150
		0+900	±05	св.+600+900
			±1,0	0+600
		0+1000	±0,5	св.+500+1000
			±1,0	0+500
		0+1200	±1,0	св.+500+1200
			±2,0	0+500
	L	0+400	±0,5	св.+200+400
			$\pm[0,5+(200-t^{(**)})/25]$	0+200
		0+600	$\pm 0,25$	св.+300+600
			$\pm[0,25+(300-t)/45]$	0+300
		0+800	±0,25	св.+300+800
			$\pm[0,25+(300-t)/50]$	0+300
	N	0+1200	±0,5	св.+400+1200
			±[0,5+(400-t)/80]	0+400

^{(*) -} типы HCX первичных преобразователей температуры по ГОСТ 6651-2009 и ГОСТ Р 8.585-2001. (**) - t – измеряемая температура

Пределы допускаемой дополнительной погрешности ИП, вызванной изменением температуры окружающего воздуха, на каждые 10 °C изменения температуры:

- от минус 40 до минус 10 °C не более предела допускаемой основной погрешности;
- св. минус 10 до плюс 70 $^{\circ}\mathrm{C}$ не более 0,5 предела допускаемой основной погрешности.

Пределы допускаемой дополнительной погрешности, вызванной воздействием постоянных магнитных полей или переменных полей сетевой частоты напряженностью до 400 А/м, не превышают 0,5 предела допускаемой основной погрешности.

Пределы допускаемой погрешности компенсации «холодного спая» термопары ИП не превышают 0,5 предела допускаемой основной погрешности.

Пределы допускаемой суммарной погрешности ТПУ (U_{Σ} , °C) для любой измеренной температуры рассчитываются по формуле

$$U_{\Sigma} = \pm \sqrt{U \pi \Pi^2 + U \mu \Pi^2}$$
,

где: Uпп - предел допускаемого отклонения от HCX ПП при измеренной температуре, °C; Uип - предел допускаемой погрешности ИП в диапазоне измерения температур, °C.

Питание ТПУ исполнений УТП, УТС, УТП Exd, УТС Exd осуществляется от источника постоянного тока напряжением от 12 до 36 B с допускаемым отклонением $\pm 2\%$.

Питание ТПУ исполнений УТП Exi, УТС Exi осуществляется от искробезопасных источников постоянного тока или от источников постоянного тока общепромышленного исполнения, но через барьеры искрозащиты, напряжением 24~B~c допускаемым отклонением $\pm 2\%$. Параметры искробезопасной цепи должны соответствовать значениям:

- максимальное входное напряжение Ui 24 B;
- максимальный входной ток Ii 120 мA;
- максимальная входная мощность Рі 0,75 Вт.

Мощность, потребляемая ТПУ исполнений УТП Ехі, УТС Ехі, Вт, не более......0,75. Выходной сигнал (по ГОСТ 26.011-80):

– постоянный ток, изменяющийся в пределах от 4 до 20 мА.

Вид климатического исполнения термопреобразователей С2 по ГОСТ Р 52931-2008.

Степень защиты ТПУ от проникновения внутрь воды и пыли соответствует исполнению IP 65 по ГОСТ 14254-96.

Время установления рабочего режима (предварительный прогрев), мин, не более....15.

Длина монтажной части, мм...... от 60 до 3150.

Масса ТПУ, кг...... от 0,4 до 3,0.

В исполнениях УТС, УТС Exi, УТС Exd внутреннее соединение ИП и ПП выполнено по трехпроводной схеме.

Крепежные элементы, в исполнениях УТП Exd, УТС Exd, крепящие детали оболочки, кабельные вводы, токоведущие и заземляющие зажимы предохранены от самоотвинчивания применением контргаек и стопорных устройств.

В исполнениях УТП Exd, УТС Exd, УТП Exi, УТС Exi предусмотрены элементы для пломбирования крышек клеммных головок.

ТПУ исполнений УТП Ехі, УТС Ехі имеют «особовзрывобезопасный» уровень взрывозащиты по ГОСТ Р 51330.0-99, обеспечиваемый видом взрывозащиты «искробезопасная электрическая цепь і» по ГОСТ Р 51330.10-99, температурный класс Т6 и маркировку взрывозащиты «ExiaIICT6X».

ТПУ исполнений УТП Exd, УТС Exd имеют «взрывобезопасный» уровень взрывозащиты по ГОСТ Р 51330.0-99, обеспечиваемый видом взрывозащиты «взрывонепроницаемая оболочка» по ГОСТ Р 51330.1-99, температурный класс Т6 и маркировку взрывозащиты «1ExdIICT6X».

Примечание - все показатели надежности нормируются для номинальной температуры применения - наиболее вероятной температуре эксплуатации. Как правило, ее принимают за

0,75 от верхнего предела рабочего диапазона температур. При указанных выше температурах имеет место понятие - ТП кратковременного применения, а именно до 100 часов. За это время НСХ термопары не должна измениться больше чем на 1%.

Знак утверждения типа

наносится на титульный лист (в правом верхнем углу) паспорта и руководства по эксплуатации типографским способом, а также на этикетку, прикрепленную к ТПУ.

Комплектность средства измерений

Термопреобразователь ТПУ - 1 шт.

Паспорт ДСВ 030-10 ПС – 1 экз.

Руководство по эксплуатации ДСВ 030-10 РЭ – 1 экз. (на партию при поставке в один адрес).

Поверка

осуществляется по документу МП 47757-11, приведенному в разделах 14, 15 Руководства по эксплуатации ДСВ 030-10 РЭ, утвержденной ГЦИ СИ ФГУП «ВНИИМС», 12.05.2011г.

Основные средства поверки:

- Установка для испытания электрической прочности изоляции ВМН 06.00.000 250 В; $\Pi\Gamma$ ±10 В;
 - Мегаомметр электронный Ф4102/1-1M (0-2000) MOм; KT 1,5;
- Калибратор-измеритель унифицированных сигналов эталонный ИКСУ-260L [(-10) -100] мВ, ПГ \pm 0,006 мВ; (0 25) мА, ПГ \pm 0,001 мА; (0 180) Ом, ПГ \pm 0,015 Ом; (180-320) Ом, ПГ \pm 0,025 Ом;
- Термостат переливной прецизионный ТПП-1.1 [(-40)-100] °C, нестабильность $\pm (0,004-0,01)$ °C.
 - Термостат жидкостной «ТЕРМОТЕСТ-300» (100-300) °C, нестабильность ±0,01 °C;
- Термометр сопротивления эталонный ЭТС-100 [(-196)-660]°С, ПГ \pm (0,02-0,15)°С, 3 разряд;
 - Прецизионный измеритель-регулятор температуры МИТ 8.10 [(-200)-500] °C,
- $\Pi\Gamma \pm (0.0035 0.0085)$ °C; (0-1500) OM, $\Pi\Gamma \pm (0.0005 0.018)$ OM;
- Преобразователь термоэлектрический эталонный ТППО-1000 (300-1200) °C, ПГ \pm (0,5-0,9) °C, 2 разряд;
 - Милливольтметр B2-99 [(-300)-300] мВ, $\Pi\Gamma \pm (0,006-0,02)$ мВ;
 - Печь МТП-2MP-50-500 (100-1200) °C; 0,8 °C /см, ±0,1 °C /мин.

Сведения о методиках (методах) измерений приведены в соответствующих разделах Руководства по эксплуатации ДСВ 030-10 РЭ.

Нормативные и технические документы, устанавливающие требования к термопреобразователям с унифицированным выходным сигналом УТП, УТС, УТП Ехі, УТС Ехі, УТП Ехі, УТП Ехі,

ГОСТ 8.558-93 ГСИ. Государственная поверочная схема для средств измерений температуры ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

ГОСТ 30232-94 Термопреобразователи с унифицированным выходным сигналом. Общие технические требования.

ГОСТ 13384-93 Преобразователи измерительные для термоэлектрических преобразователей и термопреобразователей сопротивления. Общие технические требования и методы испытаний. ГОСТ Р 6651-2009 ГСИ. Термометры сопротивления из платины, меди и никеля. Общие

технические требования и методы испытаний.

ГОСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические непрерывные входные и выходные.

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

ТУ 4211-034-39375199-10 Термопреобразователи с унифицированным выходным сигналом. Технические условия.

ТУ 4211-033-39375199-10 Преобразователи измерительные ПИ Т, ПИ ТЕхі, ПИ С, ПИ СЕхі. Технические условия.

ДСВ 030-10 РЭ Термопреобразователи с унифицированным выходным сигналом Руководство по эксплуатации.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений:

Осуществление деятельности в области охраны окружающей среды; выполнение работ по обеспечению безопасных условий и охраны труда; осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта; осуществление геодезической и картографической деятельности; выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель:

Общество с ограниченной ответственностью Научно-производственное

объединение «Вакууммаш», (ООО НПО «Вакууммаш»)

Юридический адрес: 426057 г. Ижевск, Удмуртская Республика, проезд

Дерябина, 2/52.

Почтовый адрес: 426034, г. Ижевск, а/я 3472.

Tел./Факс: +7(3412) 609-801, 609-802, 609-637, 609-806, 609-813, 609-814,

609-815

E-mail: POSTMASTER@VAKUUMMASH.UDM.RU

Испытательный центр:

Государственный центр испытаний средств измерений (ГЦИ СИ) ФГУП «ВНИИМС», г.Москва

Аттестат аккредитации от 27.06.2008, регистрационный номер в Государственном реестре средств измерений № 30004-08.

Адрес: 119361, г.Москва, ул.Озерная, д.46 Тел./факс: (495) 437-55-77 / 437-56-66.

E-mail: office@vniims.ru, адрес в Интернет: www.vniims.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р.Петросян

МП «___» _____ 2011 г.