

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

DE.C.31.010.A № 43975

Срок действия до 03 октября 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Спектрометры оптические эмиссионные FOUNDRY-MASTER модели XPR, UVR, LAB, VIS

изготовитель

Фирма "Oxford Instruments Analytical GmbH", Германия

РЕГИСТРАЦИОННЫЙ № 47827-11

ДОКУМЕНТ НА ПОВЕРКУ МП 47827-11

интервал между поверками 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **03 октября 2011 г.** № **5179**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Е.Р.Петрос	СЯІ
Федерального агентства		
	" 2011 г	

Серия СИ

№ 002016

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрометры оптические эмиссионные FOUNDRY – MASTER модели XPR, UVR, LAB, VIS.

Назначение средства измерений

Спектрометры оптические эмиссионные FOUNDRY – MASTER модели XPR, UVR, LAB, VIS предназначены для измерения концентрации химических элементов в металлах и сплавах.

Описание средства измерений

Принцип действия спектрометров оптических эмиссионных FOUNDRY – MASTER модели XPR, UVR, LAB, VIS основан на методе эмиссионного автоматического спектрального анализа с возбужением пробы с помощью искры.

Спектрометры состоят из источника возбуждения спектра, оптической системы и автоматизированной системы управления и регистрации на базе IBM – совместимого компьютера.

Искровой источник возбуждения спектра предназначен для возбуждения эмиссионного светового потока от искры между образцом и электродом. Спектральный состав света определяется химическим составом исследуемой пробы.

Электрод обдувается потоком аргона, что повышает точность и воспроизводимость результатов измерений. Запатентованная система обтекания электрода потоком аргона JetStream, позволяет измерять химический состав образцов различной формы (стержни, трубы, мелкие изделия и т.д.) без специальных адаптеров.

Открытый столик, закрывающийся саморегулирующейся крышкой, делает возможным работу с большими образцами (десятки см) или образцами неправильной формы.

Оптическая система, собранная по схеме Паше – Рунге, предназначена для анализа и регистрации эмиссионного светового потока, и включает голографическую решетку 3000 штрихов/мм и массив из линейных ССD детекторов (16х3000 пикселей) с разрешением 6 пм. Спектрометры разных моделей отличаются внешним исполнением и рабочим диапазоном по длинам волн.

Конструктивно спектрометры XPR, UVR выполнены в виде настольного прибора, LAB, VIS в виде напольного прибора.

Управление процессом измерения и обработки выходной информации осуществляется от компьютера типа Pentium с помощью специального программного комплекса. По программе осуществляется настройка прибора, построение градуировочных зависимостей на основе анализа стандартных образцов, оптимизация его параметров, управление режимами работы спектрометра, обработка, сохранение и печать результатов измерения.

FOUNDRY – MASTER LAB

FOUNDRY – MASTER VIS

FOUNDRY – MASTER UVR

FOUNDRY – MASTER XPR

Программное обеспечение

Программное обеспечение идентифицируется при включении спектрометра путем вывода на экран номера версии.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1

Наименование программного обеспечения	Идентификаци- онное наимено- вание про- граммного обес- печения	Номер версии (идентификаци- онный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычис- ления цифрового идентификатора программного обеспечения
WASLAB1	-	3.30B	-	-

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений по МИ 3286-2010 «С» - метрологически значимая часть ПО СИ и измеренные данные достаточно защищены с помощью специальных средств защиты. Конструктивно спектрометры имеют защиту встроенного программного обеспечения от преднамеренных или непреднамеренных изменений, реализованную изготовителем на этапе производства путем установки системы защиты микроконтроллера от чтения и записи.

Пломбировка приборов конструкцией спектрометров не предусмотрена.

Метрологические и технические характеристики

Метод измерения	эмиссионный спектральный анализ			
Способ регистрации	параллельный			
	XPR	UVR	LAB	VIS
Рабочий диапазон, нм	130 780	160 800	130 780	185 590
Габаритные размеры:	400x650x750	368x635x889	1145x720x640	680x410x640
В х Ш х Д, мм, не более				

					Deel o mielob
Потребляемая мощность	1250 B⋅A	1250) B∙A	1250 B⋅A	1250 B·A
Напряжение питания				220 B +/-	- 10В, 50/60 Гц
Диапазон температур окружающей среды, °С		5 40			
Диапазон относительной влажности, %		20 – 80			
Диапазон атмосферного давления, кПа		84 – 106,7			
Чистота аргона, % не ниже		99,998			
Давление на выходном манометре редуктора аргона		3 бар			

Определяемый элемент в ста-	Диапазон измерения,	Пределы допускаемой абсолютной по-
лях ГОСТ 18895-97	% массовой доли	грешности измерения, % массовой доли
Марганец	0,050 2,0	± (0,008 0,08)
Медь	0,010 1,00	± (0,004 0,06)
Молибден	0,010 5,0	± (0,004 0,12)
Углерод	0,020 2,0	± (0,008 0,06)
Кремний	0,050 2,5	± (0,012 0,08)
Никель	0,010 10,0	± (0,004 0,16)
Хром	0,010 30,0	± (0,003 0,25)
Определяемый элемент медная	Диапазон измерения,	Пределы допускаемой абсолютной по-
основа ГОСТ 9716.2-79	% масс. доли	грешности измерения, % масс. доли
Железо	0,010 1,50	0,0017+0,23C
Марганец	0,01 4,0	0,0015+0,23C
Олово	0,5 2,0	0,0033+0,23C
Свинец	0,010 0, 50	0,0016+0,20C

В зависимости от того для какой матрицы предназначен спектрометр погрешность определяется по МВИ.

Знак утверждения типа

Знак утверждения типа наносится на каждый экземпляр спектрометра в виде наклейки, а также на титульный лист Руководства по эксплуатации спектрометра типографским способом.

Комплектность средства измерений

- Измерительный прибор.
 Чемодан Mega 1600 Cantilever с рекалибровочными образцами и запасными частями 1 экз.
 LCD монитор
 Редуктор аргона
 Вакуумный насос (кроме модели VIS)
 Принтер
 экз.
 экз.
- 7. Комплект эксплуатационных документов. 1 экз.
- 8. Руководство по эксплуатации с методикой поверки. 1 экз.

Поверка

осуществляется по методике поверки МП 47827-11 (раздел руководства по эксплуатации "Методика поверки"), утвержденной ГЦИ СИ "Ростест - Москва " 30.06. 2011 г.

Средства поверки: Стандартные образцы состава стали (Γ CO 4165 – 91 Π ; 2489 – 91 Π ... 2497 – 91 Π , Γ CO 1258-77...1263-77) или другие Γ CO в зависимости от того для какой матрицы (железо, алюминий, медь, титан и др.) предназначен спектрометр.

Сведения о методиках (методах) измерений

ГОСТ 18895-97 «Сталь. Метод фотоэлектрического спектрального анализа»,

ГОСТ 9716.2-79 «Сплавы медно-цинковые. Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектра».

Нормативные и технические документы, устанавливающие требования к спектрометрам оптическим эмиссионным FOUNDRY – MASTER модели XPR, UVR, LAB, VIS

- 1. МИ 2639-01 ГСИ. Государственная поверочная схема для средств измерений массовой доли компонентов в веществах и материалах
 - 2. ГОСТ 18895-97 «Сталь. Метод фотоэлектрического спектрального анализа».
- 3. ГОСТ 9716.2-79 «Сплавы медно-цинковые. Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектра».
 - 4. Техническая документация фирмы «Oxford Instruments Analytical GmbH».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении деятельности по обеспечению безопасности при чрезвычайных ситуациях;
- при осуществлении производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта;
- при осуществлении деятельности в области обороны и безопасности государства;
- при осуществлении геодезической и картографической деятельности;
- при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Фирма " Oxford Instruments Analytical GmbH ", Германия

Wellesweg 31, 47589 Uedem, e-mail: <u>industrial@oxinst.com</u>, <u>www.oxford-instruments.com</u>, <u>тел.</u>: +49 2825 9383-0,

Факс: +49 2825 9383-100.

Заявитель

ООО «СИНЕРКОН», 117105, Москва, Варшавское шоссе, д. 32, стр.1, тел.: +7(499)611-15-09, 611-15-37, 611-52-89, факс: +7(495)741-59-04.

Испытательный центр

ГЦИ СИ Федеральное государственное учреждение «Российский центр испытаний и сертификации – Москва» (ФГУ «Ростест-Москва»),

117418, Москва, Нахимовский пр., 31, тел.: 129-19-11 факс: 124-99-96

email: info@rostest.ru,

аттестат аккредитации № 30010-10 от «15» марта 2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.п. «____» _____ 2011г.