

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.010.A № 44044

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО "ГТ-ТЭЦ Энерго" на ГТ ТЭЦ г.Касимов

ЗАВОДСКОЙ НОМЕР 011

ИЗГОТОВИТЕЛЬ
ОАО "ГТ-ТЭЦ Энерго", г.Москва

РЕГИСТРАЦИОННЫЙ № 47912-11

ДОКУМЕНТ НА ПОВЕРКУ МП 1062/446 2011

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **03 октября 2011 г.** № **5187**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства		Е.Р.Петросян
	""	2011 г.

Серия СИ № 002072

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ГТ-ТЭЦ Энерго» на ГТ ТЭЦ г. Касимов

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ГТ-ТЭЦ Энерго» на ГТ ТЭЦ г. Касимов (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, для осуществления автоматизированного коммерческого учета и контроля потребления электроэнергии и мощности с ОРЭМ на ГТ ТЭЦ г. Касимов по всем расчетным точкам учета, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в интегрированную автоматизированную систему управления коммерческим учетом (далее по тексту - ИАСУ КУ) ОАО «АТС»; филиал ОАО «СО ЕЭС» Рязанское РДУ; филиал «МРСК Центра и Приволжья» - «Рязаньэнерго» и ОАО «Рязанская энергетическая сбытовая компания» в рамках согласованного регламента.

Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления энергопотреблением.

Описание средства измерений

АИИС КУЭ построена на основе ИВК «Альфа Центр» (Госреестр № 20481-00) и представляет собой трехуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ состоит из трех уровней:

1-ый уровень – измерительно-информационный комплекс (ИИК), который включает в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи и технические средства приемапередачи данных.

2-ой уровень – информационно-вычислительный комплекс (ИВК), который включает в себя устройство сбора и передачи данных (УСПД) ЭКОМ-3000 Госсреестр № 17049-09, автоматизированные рабочие места операторов, технические средства приема-передачи данных, технические средства обеспечения питания технологического оборудования.

3-й уровень – информационно-вычислительный комплекс (ИВК), который включает в себя сервер сбора, обработки и хранения данных ОАО «ГТ ТЭЦ Энерго» (далее по тексту – сервер ОАО «ГТ ТЭЦ Энерго»), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

В качестве сервера ОАО «ГТ-ТЭЦ Энерго» используется промышленный компьютер HP ProLian ML370 с установленным программным обеспечением AC_SE и Oracle 9.2 (ПО «Альфа Центр»)..

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в 30 мин) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);

- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений в организации-участники оптового рынка электроэнергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени);
- передача журналов событий счетчиков.

Принцип действия:

ТТ и ТН приводят действительные значения токов и напряжений к нормированным величинам. Непрерывные величины тока и напряжения в точке измерения электроэнергии с ТТ и ТН поступают на вход счетчика. Счетчик преобразует аналоговые сигналы тока и напряжения в дискретные, проводит вычисления активной, реактивной и полной мощности, интегрирует полученные значения на заданном интервале усреднения (30 мин). По завершению заданного интервала интегрирования переносит данные в энергонезависимую память с привязкой к календарному времени.

В процессе работы счетчика постоянно ведется контроль событий, которые по мере их возникновения записываются в журналы событий. Данные сохраняются в энергонезависимой памяти счетчика на глубину не менее 35 сут.

УСПД в соответствии с параметрами конфигурации раз в 30 мин считывает данные коммерческого учета электроэнергии и журналы событий счетчиков, подключенных к УСПД.

Считанные данные результатов измерений в УСПД приводятся к реальным значениям с учетом коэффициентов трансформации ТТ и ТН и заносятся в базу данных, по описанию групп учета формируются учетные данные группы и архивируются в БД. Так же в базу данных УСПД заносятся журналы событий счетчиков.

В результате функционирования УСПД производится сбор данных со всех ИИК путем последовательного опроса всех счетчиков. В процессе своего функционирования УСПД непрерывно ведет журнал событий с указанием даты и времени возникновения событий.

Результаты измерений, журналы событий счетчиков и УСПД хранятся в энергонезависимой памяти УСПД не менее 35 сут.

УСПД автоматически, в заданные интервалы времени с периодичностью 30 мин, по запросу передает информацию на сервер ОАО «ГТ-ТЭЦ Энерго». После получения информации результаты измерений приращений активной и реактивной электроэнергии и записи журналов событий счетчиков и УСПД заносятся в базу данных сервера (записываются на жесткий диск сервера).

Доступ к информации, хранящейся в базе данных УСПД, осуществляется с АРМ инженера АСКУ ЭН.

Все виды коммерческой, технической и служебной информации привязаны к единому календарному времени.

Измерение времени в АИИС КУЭ происходит автоматически внутренними таймерами счетчиков, УСПД.

Синхронизация времени УСПД осуществляется по сигналам единого времени, принимаемым через устройство синхронизации встроенное в УСПД. От УССВ синхронизируются внутренние часы УСПД. Контроль времени УСПД осуществляется с периодичностью 1 с, синхронизация времени осуществляется при расхождении времени СОЕВ и УСПД на величину более 1 с.

СОЕВ выполняет законченную функцию измерения времени, имеет нормированные метрологические характеристики и обеспечивает синхронизацию времени с точностью не хуже ± 5.0 с/сут.

Синхронизация времени в счетчиках, подключенных к УСПД, осуществляется от УСПД. Контроль времени в счетчиках происходит при каждом сеансе связи, синхронизация времени – при расхождении времени счетчиков и УСПД на величину более ± 2 с.

Программное обеспечение

В состав ПО АИИС КУЭ входит: ПО счетчиков электроэнергии и ПО СБД АИИС КУЭ. Программные средства СБД АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных (СУБД) и прикладное ПО ИВК «Альфа Центр».

Состав программного обеспечения АИИС КУЭ ОАО «ГТ-ТЭЦ Энерго» на ГТ ТЭЦ г. Касимов приведён в таблице 1.

Таблица 1

таолица т				
Наименова-	Идентификационное	Номер версии	Цифровой иденти-	Алгоритм вы-
ние про-	наименование про-	(идентификаци-	фикатор программ-	числения циф-
граммного	граммного обеспече-	онный номер)	ного обеспечения	рового иденти-
обеспечения	ния	программного	(контрольная сумма	фикатора про-
		обеспечения	исполняемого кода)	граммного
				обеспечения
	Альфа Центр	11.01.1	3929232592	CRC
	Альфа Центр Комму- никатор	3.27.1	403100295	CRC
ПО на сервере ОАО «ГТ-	Альфа Центр Диспет- чер заданий	2.10.2	2771930370	CRC
ТЭЦ Энерго» г. Чехов	Альфа Центр Утилиты	2.5.11.142	284237723	CRC
	GPSRaeder	3.10.4.0	110830264	CRC
	Microsoft Windows Server 2003	R2 Standart Edition	69890-OEM- 4418022-45808	-
	Альфа Центр	7.07.07.04	3929232592	CRC
	Альфа Центр Комму- никатор	3.26	674239912	CRC
ПО на АРМ	Альфа Центр Утилиты	2.5.11.140	2153275003	CRC
ГТ ТЭЦ г. Новочеркасск	Альфа Центр Монито- ринг	2.3.12.301	866953713	CRC
	Microsoft WINDOWS XP Professional VER.2002 SP2	SP2	76456-OEM- 0012657-48704	-

ПО ИВК «Альфа Центр» не влияет на метрологические характеристики АИИС КУЭ ОАО «ГТ-ТЭЦ Энерго» на ГТ ТЭЦ г. Касимов.

Уровень защиты программного обеспечения АИИС КУЭ ОАО «ГТ-ТЭЦ Энерго» на ГТ ТЭЦ г. Касимов от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ ОАО «ГТ-ТЭЦ Энерго» на ГТ ТЭЦ г. Касимов приведен в Таблице 2.

Границы допускаемой относительной погрешности измерения активной и реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ приведены в Таблице 3.

Таблица 2

_	таолица 2	Т	Τ	Г	ı		
№ ИИК	Наименование ИИК	Трансформатор тока	Трансформатор напряжения	Счетчик элек- трической энер- гии	устд	Сервер	Вид электроэне ргии
1	ТГ-1 яч.9 (62104000211300 1)	ТЛО-10 Класс точности 0,5 800/5 Заводской № 8968, 8967, 8970 Госреестр № 25433-07	3xVRQ3n/S2 Класс точности 0,5 10000/√3/100/√3 Заводской № 0580831, 0580816, 0580815 Госреестр № 21988-01	А1805RAL-Р4G- DW-4 Класс точности 0,5S/1,0 Заводской № 01208077 Госреестр № 31857-06	ЭКОМ-3000 Заводской №05102896 Госсреестр № 17049-09		Активная Реактивная
2	ТГ-2 яч.10 (62104000211300 2)	ТЛО-10 Класс точности 0,5 800/5 Заводской № 8969, 8966, 8971 Госреестр № 25433-07	3xVRQ3n/S2 Класс точности 0,5 10000/√3/100/√3 Заводской № 0580819, 0580821, 0580817 Госреестр № 21988-01	А1805RAL-P4G- DW-4 Класс точности 0,5S/1,0 Заводской № 01208079 Госреестр № 31857-06		HP ProLian ML370 Заводской № GB8606XLLE	Активная Реактивная
3	ТСН-1 яч.1	ТЛО-10 Класс точности 0,5 100/5 Заводской № 5244, 5251, 5246 Госреестр № 25433-07	3xVRQ3n/S2 Класс точности 0,5 10000/√3/100/√3 Заводской № 0580818, 0580820, 0580829 Госреестр № 21988-01	А1805RAL-Р4G- DW-4 Класс точности 0,5 S/1,0 Заводской № 01208078 Госреестр № 31857-06			Активная Реактивная
4	ТСН-2 яч.2	ТЛО-10 Класс точности 0,5 100/5 Заводской № 5253, 5243, 5256 Госреестр № 25433-07	3хVRQ3п/S2 Класс точности 0,5 10000/√3/100/√3 Заводской № 0580857, 0580825, 0580822 Госреестр № 21988-01	А1805RAL-Р4G- DW-4 Класс точности 0,5S/1,0 Заводской № 01207483 Госреестр № 31857-06			Активная Реактивная
5	КРУ 10 кВ Каси- мовской ГТ-ТЭЦ; ячейка 10 кВ №7 (62104000211310 1)	ТЛО-10 Класс точности 0,5 1000/5 Заводской № 5287, 5288, 5284 Госреестр № 25433-07	3xVRQ3n/S2 Класс точности 0,5 10000/√3/100/√3 Заводской № 0580832, 0580826, 0580823 Госреестр № 21988-01	А1805RAL-P4G- DW-4 Класс точности 0,5S/1,0 Заводской № 01207482 Госреестр № 31857-06	ЭКОМ-3000 Заводской №05102896 Госсреестр № 17049-09	HP ProLian ML370 Заводской № GB8606XLLE	Активная Реактивная
6	КРУ 10 кВ Касимовской ГТ-ТЭЦ; ячейка 10 кВ №8 (62104000211320 1)	ТЛО-10 Класс точности 0,5 1000/5 Заводской № 2372, 2369, 2367 Госреестр № 25433-07	точности 0,5 1000/5 жой № 2372, 69, 2367 среестр № Точности 0,5 10000/√3/100/√3 Заводской № 0734243, 0734245, 0734243, 0734239 Госреестр № Госреестр №	А1805RAL-P4G- DW-4 Класс точности 0,5S/1,0 Заводской № 01208080 Госреестр № 31857-06	ЭКОЛ Заводской. Госсреестр	HP ProLian ML3 GB860	Активная Реактивная

Примечание: A1805RAL-P4G-DW-4 (A=5000 имп/кВт·ч(имп/квар·ч)

Таблина 3

таолица 5					
Границы допус	каемой относител	вьной погрешности измерен условиях эксплуатации и	ния активной электрической АИИС КУЭ	энергии в рабочих	
Номер ИК	cosφ	δ _{5% P} , % $I_{5\%} ≤ I_{H3M} < I_{20\%}$	δ _{20% P} , % $I_{20\%} \leq I_{\text{ИЗМ}} < I_{100\%}$	$\begin{array}{c} \delta_{100\% \; P}, \% \\ I_{100\%} \! \leq \! \! I_{H3M} $	
1-6 TT-0,5; TH-0,5; Сч-0,5S	1,0	±2,2	±1,7	±1,6	
	0,9	±2,7	±1,9	±1,7	
	0,8	±3,2	±2,1	±1,9	
	0,7	±3,8	±2,4	±2,1	
	0,6	±4,6	±2,8	±2,3	
	0,5	±5,7	±3,3	±2,7	
Границы допускаемой относительной погрешности измерения реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ					
Номер ИК	cosφ/sinφ	$\delta_{5\% \; P}, \% \ I_{5\%} \!\! \leq \!\! I_{\text{H3M}} \!\! < \!\! I_{20\%}$	$\delta_{20\% P}, \% \ I_{20\%} \le I_{M3M} < I_{100\%}$	$\begin{array}{c} \delta_{100\% \; P}, \% \\ I_{100\%} \leq I_{H3M} \leq I_{120\%} \end{array}$	
1-6 TT-0,5; TH-0,5; Сч-1,0	0,9/0,44	±7,2	±4,0	±3,1	
	0,8/0,6	±5,2	±3,0	±2,4	
	0,7/0,71	±4,3	±2,7	±2,2	
	0,6/0,8	±3,8	±2,4	±2,1	
	0,5/0,87	+3.5	±2,3	±2,0	

Примечания:

- 1. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,9 до 1,1·Uном;
 - ток от 1 до 1,2·Іном, $\cos j = 0,9$ инд;
 - температура окружающей среды: (20 ± 5) °C.
- 4. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети от 0,9 до 1,1-Ином,
 - ток от 0,01 до 1,2·Іном;
 - температура окружающей среды:
 - для счетчиков электроэнергии от минус 40 до плюс 65 $^{\circ}$ C;
 - УСПД от минус 10 до плюс 50°C;
 - для трансформаторов тока по ГОСТ 7746-2001;
 - для трансформаторов напряжения по ГОСТ 1983-2001.
- 5. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и ГОСТ 26035-83 в режиме измерения реактивной электроэнергии.
- 6. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 5 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчики электроэнергии А1800 среднее время наработки на отказ не менее 120 000 часов;
- УСПД ЭКОМ 3000 среднее время наработки на отказ не менее 75 000 часов.

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;

• для модема Tв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ АЭС от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют возможность пломбирования;
- на счетчики предусмотрена возможность пломбирование крышки зажимов и откидывающейся прозрачной крышки на лицевой панели счетчика;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, серверах, APM;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и разграничение прав доступа;
- защита результатов измерений при передаче информации (возможность использования цифровой подписи).

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- серверах, АРМ (функция автоматизирована).

Глубина хранения информации:

- счетчик электроэнергии A1800 тридцатиминутный профиль нагрузки в двух направлениях не менее 92 суток; при отключении питания не менее 30 лет;
- УСПД ЭКОМ 3000 суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии потребленной за месяц по каждому каналу 40 суток; при отключении питания 10 лет;
- ИВК хранение результатов измерений и информации о состоянии средств измерений за весь срок эксплуатации системы.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4

Таблица 4

№ п/п	Наименование	Тип	Количество, шт.	
1	Трансформатор тока	ТЛО-10	18	
3	Трансформатор тока	VRQ3n/S2	18	
4	Электросчетчик	A1805RAL-P4G-DW-4	6	
5	GSM-модем	IRZ Automation MC52iT	1	
6	Сервер	HP ProLian ML370	1	
7	Устройство сбора и передачи данных	ЭКОМ-3000	1	
8	Специализированное программное	ИВК «Альфа Центр»	1	
	обеспечение	1 . 1		
9	Паспорт-формуляр	ГДАР.411711.061-11.ПФ	1	
10	Методика поверки	МП 1062/446-2011	1	

Поверка

осуществляется по документу МП 1062/446-2011 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ГТТЭЦ Энерго» на ГТ ТЭЦ г. Касимов. Методика поверки», утвержденным ГЦИ СИ ФГУ «Ростест-Москва» в августе 2011 г.

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- ТН по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Счетчики Альфа A1800 по методике поверки МП-2203-0042-2006, согласованной с ГЦИ СИ ФГУ «ВНИИМ им. Д.И. Менделеева» 19 мая 2006 г.
- ИВК «Альфа Центр» по методике поверки ДЯИМ.466453.006МП утверждённой ГЦИ СИ ВНИИМС в 2000 г.
- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;
- Термометр по ГОСТ 28498, диапазон измерений (-40...+50) °C, цена деления 1°C.

Сведения о методиках (методах) измерений

Методика измерений «Методика (методы) измерений количества электрической энергии с использованием автоматизированной информационно-измерительная системы коммерческого учета электроэнергии (мощности) ОАО «ГТ-ТЭЦ Энерго» на ГТ ТЭЦ г. Касимов аттестована ЗАО НПП «ЭнергопромСервис». Свидетельство об аттестации методики (методов) измерений № 028/01.00238-2008/061.11-2011 от 05 августа 2011 г

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «ГТ-ТЭЦ Энерго» ГТ ТЭЦ г. Касимов

- $1~\Gamma OCT~P~8.596-2002~\Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- $4\ \Gamma OCT\ P\ 8.596-2002\ \Gamma CИ.$ Метрологическое обеспечение измерительных систем. Основные положения.
 - 5 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 6 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 7 ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ОАО «ГТ-ТЭЦ Энерго» 123610, г. Москва, Краснопресненская наб., дом 12

Тел./факс: (495) 792 39 08, 792 39 50

Заявитель

ЗАО НПП «ЭнергопромСервис» 105120, Москва, Костомаровский пер., дом 3, офис 104 Тел./факс: +7 (495) 663 34 35, 663 34 36

Испытательный центр

Федеральное государственное учреждение «Российский центр испытаний и сертификации — Москва» (ФГУ «Ростест-Москва»). Аттестат аккредитации № 30010-10 от 15.03.2010 года.

117418 г. Москва, Нахимовский проспект, 31 Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11 Факс (499) 124-99-96

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р.Петросян

М.П. «____» ____2011г.