ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Трансформаторы тока проходные ТЛ, ТПОЛ, ТПЛ, ТПЛК

Назначение средства измерений

Трансформаторы тока проходные ТЛ, ТПОЛ, ТПЛ, ТПЛК (далее трансформаторы) предназначены для преобразования переменного тока в электрических цепях с целью передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления.

Описание средства измерений

Принцип действия трансформатора основан на законе электромагнитной индукции. Ток первичной обмотки трансформатора создает переменный магнитный поток в магнитопроводе, вследствие чего во вторичной обмотке создается ток пропорциональный первичному току.

Трансформаторы выполнены в виде проходной или опорно-проходной конструкции, имеют магнитопроводы, первичную и вторичные обмотки, залитые компаундом, который обеспечивает электрическую прочность изоляции и защиту обмоток от проникновения влаги и механических повреждений.

Трансформаторы с переключением коэффициента трансформации имеют перемычки на выводах первичной обмотки, либо ответвления вторичных обмоток.

Трансформаторы могут быть выполнены с несколькими вторичными обмотками, предназначенными для защиты и/или измерения.

Вторичные обмотки, если их больше одной могут иметь различные коэффициенты трансформации и различные значения номинального вторичного тока.

Трансформаторы могут иметь выводы вторичных обмоток из гибкого многожильного провода.

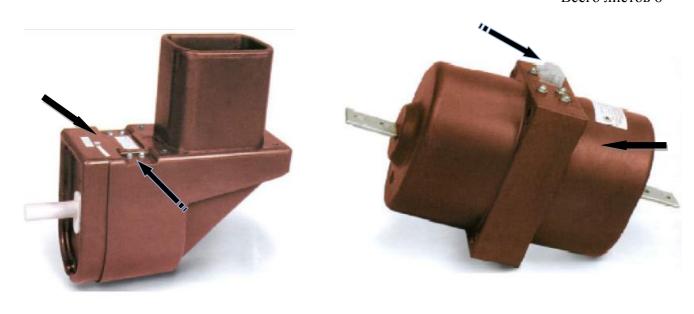
В модификации ТЛ один из выводов первичной обмотки представляет собой неподвижный контакт разъединителя.

В конструкции трансформаторов должны быть предусмотрены детали для пломбирования, предназначенные для механической защиты от несанкционированного доступа к вторичным измерительным обмоткам.

На трансформаторах имеется табличка технических данных с указанием основных технических характеристик и с предупреждающей надписью о напряжении на разомкнутых вторичных обмотках.

Маркировка выводов первичной и вторичных обмоток: рельефная, выполненная компаундом при заливке трансформатора в форму.

Трансформаторы имеют ряд модификаций, отличающихся значениями номинальных напряжений, первичным током, габаритными размерами, массой, вариантами крепления.


Структура обозначения трансформаторов приведена в таблице 1.

Общий вид трансформаторов представлен на рисунке 1.

Запись модификации, вид изоляции и способ крепления приведены в таблице 2.

Таблица 1. Структура обозначения в описании типа трансформаторов тока ТЛ, ТПОЛ, ТПЛ, ТПЛК.

ТЛ-10 ТПОЛ-10

ТПЛ-35

Рисунок 1. Общий вид трансформаторов тока проходных ТЛ, ТПОЛ, ТПЛ, ТПЛК (Стрелками указаны места нанесения поверочного клейма () и пломбирования вторичных контактов ().

Таблина 2

Модификации	Вид	Вариант крепления
	изоляции	
ТПОЛ		крепление трансформатора осуществляется с помощью
ТПЛ		фланца, в котором залиты четыре установочные втулки.
ТПЛК	литая	крепление трансформатора осуществляется с помощью
ТЛ		крепежных элементов литого блока, в котором имеются
		четыре втулки с резьбовыми отверстиями.

Метрологические и технические характеристики

Основные метрологические характеристики указаны в таблице 3.

Таблица 3

Наименование параметра	Значение характеристик для модификаций				
Паименование параметра	ТЛ	ТПОЛ	ТПЛ	ТПЛК	
Номинальное напряжение, кВ	10-11	10-11	10-35	10-11	
Номинальный первичный ток, А	5 - 3000	5-3000	5-4000	10-2000	
Номинальный вторичный ток, А	1; 2; 5				
Класс точности вторичных обмоток по					
ГОСТ 7746:					
для измерений	0,2S; 0,2; 0,5S; 0,5; 1; 3; 10				
для защиты	5P; 10P				
Номинальная вторичная нагрузка, В·А,					
вторичных обмоток	1 - 100				
Номинальная предельная кратность					
вторичной обмотки для защиты	2 - 50				
Номинальный коэффициент безопасности					
приборов вторичной обмотки для измерений	2 - 30				
Нижний предел вторичной нагрузки, В·А,					
для трансформаторов классов точности					
0,2S; 0,2; 0,5S	1				

Примечания

- 1 Согласно ГОСТ Р МЭК 61869-2-2015 для конкретного трансформатора, если одно из значений номинальной нагрузки является стандартным для одного класса точности, то для другого класса точности, допускается значение нагрузки, не являющейся стандартным значением.
- 2 Согласно ГОСТ Р МЭК 61869-2-2015 для трансформаторов с расширенным диапазоном первичного тока погрешности при токе 150 и 200 % номинального первичного тока не выходят из пределов допускаемых погрешностей для 120 % номинального первичного тока.

Средний срок службы трансформаторов - 30 лет.

Средняя наработка до отказа -40.0×10^5 ч.

Габаритные размеры и масса трансформаторов указаны в таблице 4.

Таблица 4

Наименование		Модификации				
характеристики		ТЛ	ТПОЛ	ТПЛ	ТПЛК	
Масса, кг		25-70	10-40	40-80	40-50	
Габаритные размеры, мм	длина	300-650	200-600	350-1100	200-300	
	ширина	150-250	100-300	150-400	200-250	
	высота	400-500	200-600	200-400	500-600	

Знак утверждения типа

наносят на табличку технических данных методом термотрансферной печати, на титульный лист паспорта или этикетки типографическим способом.

Комплектность средства измерений

трансформатор, шт. - 1; паспорт - 1; руководство по эксплуатации (РЭ) - 1;

комплект деталей для пломбирования

вторичных обмоток для измерений - по количеству обмоток.

Примечание - для трансформаторов с выводами вторичных обмоток из гибкого многожильного провода, детали для пломбирования вторичных обмоток для измерений в комплект поставки не входят.

Поверка

осуществляется по ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки».

Основные средства поверки:

- трансформаторы тока эталонные двухступенчатые ИТТ-3000.5, Госреестр СИ № 19457 00;
- трансформаторы тока измерительные лабораторные ТТИ-100, Госреестр СИ № 29922-05;
- прибор сравнения КНТ-03. Госреестр СИ № 24719-03.

Знак поверки наносится на трансформатор и в паспорт изделия (в соответствии с рисунком 1).

Сведения о методиках (методах) измерений

Руководство по эксплуатации на каждую модификацию.

Нормативные и технические документы, устанавливающие требования к трансформаторам тока ТЛ, ТПОЛ, ТПЛ, ТПЛК

ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия

ГОСТ 8.217-2003 Государственная система обеспечения единства измерений. Трансформаторы тока. Методика поверки

Технические условия ТУ 16-2010 ОГГ.671 225.012 ТУ. Трансформаторы тока проходные ТЛ, ТПОЛ, ТПЛ, ТПЛК

ГОСТ 8.550-86 Государственная система обеспечения единства измерений

Государственный специальный эталон и государственная поверочная схема для средств измерений коэффициента и угла масштабного преобразования синусоидального тока

ГОСТ IEC 60044-1-2013 Трансформаторы измерительные. Часть 1. Трансформаторы тока ГОСТ Р МЭК 61869-2-2015 Трансформаторы измерительные. Часть 2. Дополнительные требования к трансформаторам тока

Изготовитель

ОАО «Свердловский завод трансформаторов тока» (ОАО «СЗТТ»)

ИНН 6658017928

Юридический адрес: 620043, Россия, г. Екатеринбург, Черкасская, 25. Почтовый адрес: 620043, Россия, г. Екатеринбург, Черкасская, 25.

Телефон: (343) 234-31-04, факс: (343) 212-52-55

E-mail: cztt@cztt.ru

Испытательный центр

Федеральное бюджетное учреждение "Государственный региональный центр стандартизации, метрологии и испытаний в Свердловской области" (ФБУ "УРАЛТЕСТ") 620990, Свердловская область, г. Екатеринбург, ул. Красноармейская, д. 2а телефон (343) 350-25-83, факс (343) 350-40-81, e-mail: uraltest@uraltest.ru
Аттестат аккредитации ФБУ «УРАЛТЕСТ» по проведению испытаний средств измерений в целях утверждения типа № 30058-13 от 21.10.2013 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

С.С. Голубев

М.п «____» ______ 2016 г.