

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.34.033.A № 44167

Срок действия до 21 октября 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Преобразователи измерительные многофункциональные программируемые "Энергия-ТМ"

ИЗГОТОВИТЕЛЬ ООО НТП "Энергоконтроль", г. Заречный Пензенской обл.

РЕГИСТРАЦИОННЫЙ № 48013-11

ДОКУМЕНТ НА ПОВЕРКУ **НЕКМ.426489.011 МП**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **21 октября 2011 г.** № **5491**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Е.Р.Петросян
Федерального агентства	
	2011
	2011 г.

№ 002185

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи измерительные многофункциональные программируемые "Энергия-ТМ"

Назначение средства измерений

Преобразователи измерительные многофункциональные программируемые «Энергия-ТМ» (в дальнейшем – преобразователи «Энергия-ТМ») предназначены для преобразований постоянного тока, частоты, количества импульсов, сопротивления в значения измеряемой физической величины, а также для измерений: тепловой энергии, массового расхода и массы теплоносителя в водяных и паровых системах теплоснабжения; объемного расхода и объема газа, сжатого воздуха при рабочих и стандартных условиях в системах газоснабжения, а также измерений времени.

Описание средства измерений

Конструкция преобразователей «Энергия-ТМ» представляет собой микропроцессорные устройства, выполненные в виде автономных блоков, предназначенных для крепления на щитах и панелях. В нижней части блоков расположены клеммные колодки для внешних подключений. Колодки закрываются отдельной крышкой.

Принцип действия преобразователей «Энергия-ТМ» заключается в следующем.

Сигналы, поступающие от первичных измерительных преобразователей, преобразуются в цифровой код, используемый для обработки и преобразований в единицы измеряемых физических величин. По программе в микропроцессоре, используя измеренные значения и массив исходных данных, введенных при конфигурировании преобразователя, производятся вычисления расхода физических сред и количества тепловой энергии.

Измеренные и вычисленные значения записываются в энергонезависимую память и, при отключении питания, хранятся без ограничения времени.

Общий вид преобразователей, схема пломбировки от несанкционированного доступа, обозначение мест для нанесения оттисков и размещения пломбировочных наклеек приведены на рисунке 1.

Программное обеспечение

Встроенное программное обеспечение преобразователей «Энергия-ТМ» метрологически значимое, реализовано в виде единого модуля и хранится в энергонезависимой памяти, программируемой при выпуске из производства. Программное обеспечение преобразователей логически разделено на процессы и драйверы, которые работают с разделением времени под управлением подпрограммы переключения процессов.

Структура программного обеспечения:

- подпрограмма переключения процессов;
- драйвер часов реального времени;
- драйвер энергонезависимой памяти;
- процесс, обеспечивающий измерение и работу с АЦП;
- драйвер клавиатуры;
- процесс интерфейса оператора, обеспечивает работу с ЖК-индикатором;
- процесс, обеспечивающий расчёт выходных данных;
- процесс, обеспечивающий доступ к измеренным и накопленным данным;
- драйверы интерфейсов: RS-232C, RS-485, полудуплексной линии связи, симплексной линии связи, принтера.

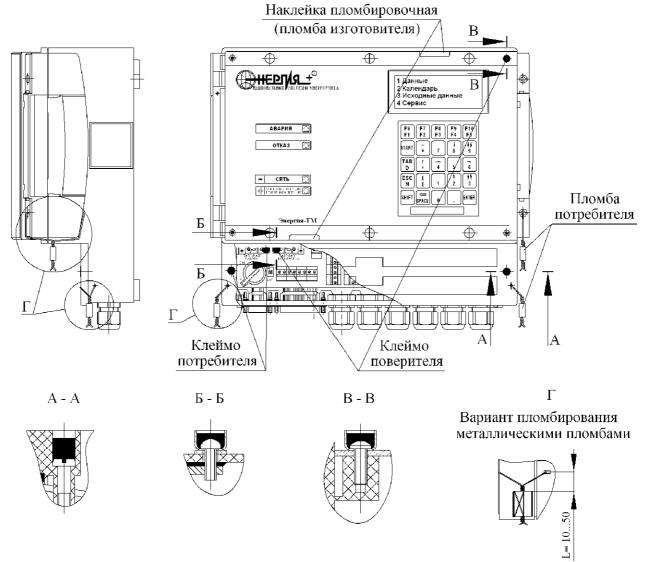


Рисунок 1 — Общий вид преобразователя «Энергия-ТМ» и схема пломбировки от несанкционированного доступа

Идентификационные данные программного обеспечения приведены в таблице 1. Таблица 1 – Идентификационные данные

Наименование программы	Идентификацион- ное наименование программного обеспечения	Номер версии (идентификаци- онный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
65V66.bin	Преобразователь Энергия-ТМ	v.6.6	79361F1EDDC99A1E28EB 5299A253783C	MD5

Влияние программного обеспечения на метрологические характеристики средства измерений оценивается относительным отличием результатов расчёта:

- значений измеряемых величин (за исключением объёмного и массового расхода, объёма и массы, тепловой энергии) от опорных значений, пределы которого составляют \pm 0.005 %;
- объёмного и массового расхода, объёма и массы, тепловой энергии от опорных значений, пределы которого составляют $\pm\,0,2~\%.$

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Диапазоны измерений:

- массы среды от 0 до 1.10^6 т;
- объёма среды от 0 до 1·10⁹ м³;
- количества тепловой энергии от 0 до 1·10⁶ Гкал.

Диапазоны измерений расхода физических сред и расхода тепловой энергии приведены в таблице 2.

Таблица 2 – Диапазоны измерений расхода

Среда		Массовый расход, т/ч		Объёмный расход, м ³ /ч		Расход тепловой энер- гии, Гкал/ч	
		МИН	макс	МИН	макс	МИН	макс
В	ода	0	10000	0	12000	0	2000
Перегр	етый пар	0	3000	0	80000	0	2000
Насыще	нный пар	0	3000	0	55000	0	1600
Природ	дный газ	0	4500	0	6·10 ^{6*}		
Сжаты	Сжатый воздух		12500	0	1,1.10 ^{7*}	на нармируатая	
Прочие	сухие	0	15000	0	2.107*	не нормируется	
газы	влажные	0	5000	0	7.106*		
*Приведенный к стандартным условиям.							

Диапазоны измерений температуры, давления и перепада давления измеряемой среды приведены в таблице 3.

Таблица 3 – Диапазоны измерений параметров среды

Среда		Температура, °С		Абсолютное давление, МПа		Перепад давления, МПа	
		МИН	макс	мин	макс	МИН	макс
В	ода	0	200	0,1	5	0	1,25
Перегр	етый пар	100	600	0,1	10	0	2,5
Насыще	нный пар	100	300	0,1	8,6	0	2,15
Природ	дный газ	- 23	67	0,1	10	0	2,5
Сжаты	й воздух	- 73	127	0,1	20	0	5
Прочие	сухие	не норм	ируется	не норм	ируется	не норм	ируется
газы	влажные	0	150	0,1	20	0	5

Пределы допускаемой основной приведённой погрешности преобразований выходного тока ПИП ($\gamma_{\rm BXO}$ а) в диапазонах измерений (0 – 5), (0 – 20), (4 – 20) мA, а также частоты выходного напряжения ПИП ($\gamma_{\rm BX}$ ч) в диапазоне измерений (1 – 5000) Гц составляют ± 0,1 % от нормирующего значения, равного $X_{\rm max}-X_{\rm min}$,

где X_{max} — максимальное значение, соответствующее току I_{max} или частоте f_{max} ; X_{min} — минимальное значение, соответствующее току I_{min} или частоте f_{min} .

Пределы допускаемой абсолютной погрешности преобразований количества импульсов с максимальной частотой следования 50 Γ ц в значения измеряемой физической величины ($\Delta_{\text{вх и}}$) вычисляют по формуле

$$\Delta_{\text{\tiny BX M}} = \pm 1.$$

Пределы допускаемой основной абсолютной погрешности преобразований сопротивления с номинальным сопротивлением 50, 100 Ом в значения измеряемой температуры ($\Delta_{\rm BXO}$ тс) вычисляют по формуле

$$\Delta_{\text{BXO TC}} = \pm \left(0.3 + 0.0006 \cdot | t|\right) \quad ^{\circ}\text{C},$$

где | t | – абсолютное значение температуры, °C.

Пределы допускаемой относительной погрешности вычислений ($\delta_{\text{в}}$) расхода физических сред и количества тепловой энергии преобразователем составляют \pm 0,2 % от значения расхода или тепловой энергии.

Пределы допускаемой основной абсолютной погрешности преобразователя при измерении интервалов времени (ΔT_0) составляют \pm 0,5 с/сут.

Пределы допускаемой дополнительной погрешности преобразований тока ($\gamma_{\text{д вх a}}$), сопротивления термопреобразователей ($\Delta_{\text{д вх TC}}$) в значения измеряемой физической величины, при измерении времени ($\Delta T_{\text{д}}$) вызванной отклонением температуры окружающего воздуха от нормальной до любой температуры в пределах рабочего диапазона температур на каждый 1 °C изменения температуры вычисляют по формулам

$$\Delta_{\pi \text{ BX TC}} = \pm 0.05 \cdot \Delta_{\text{BX0 TC}} \cdot \Delta t$$
$$\Delta T_{\pi} = \pm 0.15 \Delta T_{0} \cdot \Delta t$$

где $\gamma_{\text{вх0 a}}$ – пределы допускаемой основной приведённой погрешности преобразований тока в значения измеряемой физической величины, %;

 $\Delta_{\text{вх0 TC}}$ — пределы допускаемой основной абсолютной погрешности преобразований сопротивления термопреобразователей в значения измеряемой температуры, °C;

 ΔT_0 — пределы допускаемой основной абсолютной погрешности преобразователя при измерении интервалов времени, $\gamma_{\text{вх0}a} = 0.05$. $\gamma_{\text{вх0}a} = \Delta t$

 Δt — отклонение температуры окружающего воздуха (t $_{\rm окр}$) от температуры (20 \pm 5) °C определяется по формулам

$$\Delta t = t_{\text{окр}} - 25 \, ^{\circ}\text{C}$$
 для $t_{\text{окр}} > 25 \, ^{\circ}\text{C};$ $\Delta t = 15 \, ^{\circ}\text{C} - t_{\text{окр}}$ для $t_{\text{окр}} < 15 \, ^{\circ}\text{C}.$

Потребляемая мощность при питании от однофазной сети переменного тока напряжением (220 ± 44) В и частотой (50 ± 1) Γ ц не более 8 В·А.

Габаритные размеры не более 330×290×130 мм.

Масса не более 3 кг.

Среднее время наработки на отказ – 100000 ч.

Средний срок службы преобразователей «Энергия-ТМ» – 12 лет.

Нормальные условия применения:

- температура окружающего воздуха (20 ± 5) °C;
- относительная влажность окружающего воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.);
- напряжение питающей сети (220 \pm 44) В;
- частота питающей сети (50 \pm 1) Гц.

Рабочие условия применения:

- температура окружающей среды от минус 10 до плюс 55 °C;
- относительная влажность воздуха 90 % при 35 °C;
- атмосферное давление от 84 до 106,7 кПа (от 630 до 800 мм рт. ст.);
- напряжение питающей сети (220 \pm 44) В;
- частота питающей сети (50 \pm 1) Γ ц.

Знак утверждения типа

Знак утверждения типа наносится с помощью принтера на титульные листы (место нанесения – вверху, справа) эксплуатационной документации преобразователей «Энергия-ТМ».

Комплектность средства измерений

Комплект поставки преобразователей «Энергия-ТМ» в соответствии с таблицей 4.

Обозначение	Наименование	Количество (шт.)
HEKM.426489.011	Преобразователь измерительный многофункциональный программируемый «Энергия-ТМ»	1
НЕКМ.426489.011 ВЭ	Ведомость эксплуатационных документов	1
HEKM.426489.011 PЭ	Руководство по эксплуатации	1
НЕКМ.426489.011 МП	Методика поверки	1
НЕКМ.426489.011 ПС	Паспорт	1
НЕКМ.426489.011 МИ	Методика измерений расхода и тепловой энергии с использованием преобразователя «Энергия-ТМ»	*
	СО-диск с программой "Конфигуратор Энергия-ТМ"	**
	Вставка плавкая 5 x 20F 315 мА	2
	Элемент литиевый CR2032	1

^{*}Поставляется по отдельному заказу.

Поверка

осуществляется по методике поверки «Преобразователь измерительный многофункциональный программируемый «Энергия-ТМ». Методика поверки. НЕКМ.426489.011 МП», утвержденной руководителем ГЦИ СИ ФГУ «Пензенский ЦСМ» 30 июня 2011 г.

Рекомендуемые основные средства поверки:

- пробойная установка УПУ–10.
- мегаомметр Ф4101. Класс точности 2,5;
- прибор для поверки вольтметров дифференциальный B1-12. Пределы допускаемой основной погрешности установки калиброванных токов:
 - а) на поддиапазоне 10 мА $\pm (1,5\cdot10^{-4}\cdot I_K + 0,1 \text{ мкA});$
 - б) на поддиапазоне 100 мА $\pm (2,5\cdot10^{-4}\cdot I_K + 1 \text{ мкA});$
- генератор Г3-110. Пределы допускаемой основной погрешности установки частоты \pm (3·10⁻⁷ ·f) Γ ц, нестабильность частоты в дискретных точках \pm (5·10⁻⁹ ·f) Γ ц (за 15 мин);
 - магазин сопротивлений P4831. Класс точности $0.02/2 \times 10^{-6}$;
 - транзистор КТ315A, U_{K9} =25 B, $P_{K \text{ max}}$ =150 мВт, $h21_9 \ge 20$;
 - резистор C2-23, 0,25 Bt, 200 Ом \pm 10%;
 - резистор C2-23, 0,25 Bt, 10 кОм \pm 10%;
- частотомер электронно-счетный Ч3-84. Пределы допускаемой основной относительной погрешности измерений периода (δ_T) вычисляется по формуле

$$\delta_{\mathrm{T}} = \pm \left(\delta_{0} + \frac{T_{0}}{n \cdot T_{\mathrm{X}}} \right)$$

где δ_0 - относительная погрешность по частоте встроенного опорного генератора равна $\pm 5 \cdot 10^{-8}$;

n – число усредняемых периодов входного сигнала (УСРЕДН);

 T_0 – период меток частотомера (МЕТКИ ВРЕМЕНИ), с;

Тх – измеряемый период, с.

Сведения о методиках (методах) измерений

Преобразователь измерительный многофункциональный программируемый «Энергия-ТМ». Методика измерений расхода и тепловой энергии с использованием преобразователя «Энергия-ТМ». НЭКМ.426489.011 МИ. Регистрационный номер в Федеральном реестре методик измерений ФР.1.29.2011.10345.

^{**}Поставляется по отдельному заказу, является вспомогательным программным обеспечением.

Нормативные и технические документы, устанавливающие требования к преобразователям «Энергия-ТМ»

1 ГОСТ Р 52931-2008. Приборы контроля и регулирования технологических процессов. Общие технические условия.

Рекомендации по областям применения в сферах государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО НТП «Энергоконтроль». 442963, Россия, г. Заречный, Пензенской обл., ул. Ленина, 4а. Тел. (8412) 61-39-82. Тел./факс (8412) 61-39-83.

Испытательный центр

ГЦИ СИ Федеральное государственное учреждение «Пензенский центр стандартизации, метрологии и сертификации» (ФГУ «Пензенский ЦСМ»)

Адрес: 440028, г. Пенза, ул. Комсомольская, д. 20

тел./факс: (8412) 49-82-65 e-mail: pcsm@sura.ru

ГЦИ СИ ФГУ «Пензенский ЦСМ» зарегистрирован в Государственном реестре средств измерений под № 30033-10.