

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.34.001.A № 44857

Срок действия до 15 декабря 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Счетчики электрической энергии однофазные электронные EC2726

ИЗГОТОВИТЕЛЬ
ЗАО "ЛЭМЗ", г.Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 48578-11

ДОКУМЕНТ НА ПОВЕРКУ ЛАФС.411152.003 Д1

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 16 лет

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **15 декабря 2011 г.** № **6379**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	
Федерального агентства	

Е.Р.Петросян

"......" 2011 г.

№ 002865

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Счетчики электрической энергии однофазные электронные ЕС2726

Назначение средства измерений

Счетчики электрической энергии однофазные электронные EC2726 (далее – счетчики) предназначены для измерения и учета активной энергии в однофазных цепях переменного тока, в том числе дифференцированно по времени суток, выходным (праздничным) дням и сезонам года. Счетчики предназначены для работы внутри помещения.

Описание средства измерений

Принцип работы счетчиков основан на измерении мгновенных значений входных электрических сигналов, пропорциональных значениям тока и напряжения электрической сети с последующим вычислением активной мощности и накоплением учтенной энергии по одному или нескольким (до четырех) тарифов в соответствии с запрограммированными графиками тарификации для многотарифных вариантов исполнения.

Счетчики могут быть использованы в системах АСКУЭ в качестве первичных средств учета для получения информации об электропотреблении с помощью телеметрических импульсных выходов и цифровых интерфейсов связи.

Счетчики подключаются к электрической сети непосредственно.

Счетчики содержат следующие основные узлы и блоки:

- датчик тока в виде измерительного трансформатора тока, шунта или другого подходящего для этих целей преобразователя;
 - резистивный делитель напряжения в цепи напряжения;
- электронный измерительный элемент с аналого-цифровым преобразователем и блоком питания, предназначенный для измерения входных сигналов тока и напряжения, расчета активной мощности и энергии, учета измеренной энергии по тарифам, вывода информации на жидкокристаллический дисплей и через цифровой интерфейс на внешние устройства сбора и обработки данных;
- электронный счетный механизм с энергонезависимой памятью, предназначенный для хранения и отображения информации об энергопотреблении, а также хранения параметров пользователя и метрологических коэффициентов счетчика;
- часы реального времени с источником резервного питания для тарифных вариантов исполнения и предназначенные для отсчета текущего времени и ведения календаря;
- основное передающее устройство, предназначенное для передачи телеметрической информации в системы сбора данных и совмещенное с испытательным выходом;
- светодиодный индикатор функционирования счетчика, засвечиваемый синхронно с испытательным выходом счетчика;
- цифровые интерфейсы для обмена информацией с внешними устройствами сбора и обработки данных, а так же для программирования и калибровки счетчика.

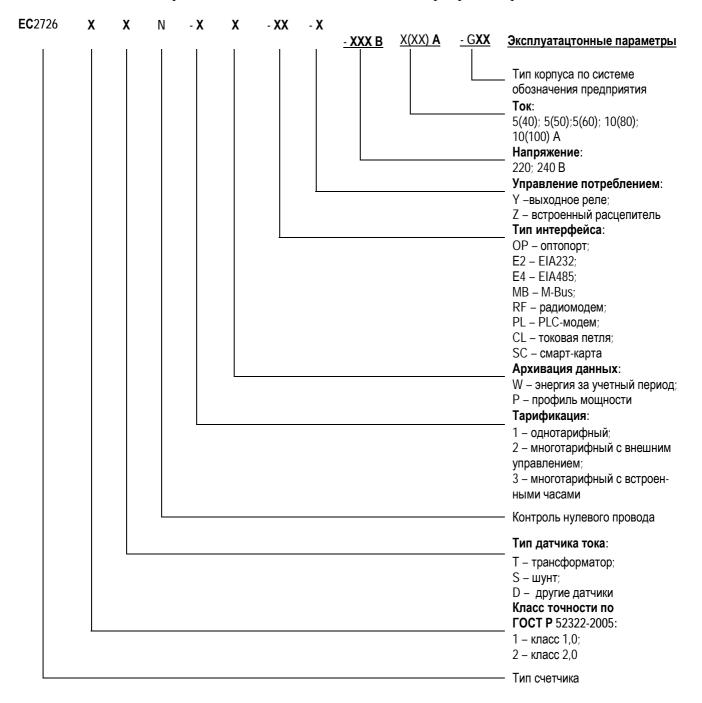
В счетчике реализована функция реверсивного счетного механизма: при изменении направления протекания тока или смене фазы напряжения на 180 градусов на зажимах счетчика счетный механизм продолжает учет энергии нарастающим итогом в сторону увеличения.

Конструктивно счетчики выполнены в виде электронного модуля с электронным дисплеем, корпуса, клеммной колодки с зажимами и крышки клеммной колодки.

Корпус состоит из цоколя и кожуха. Крепление кожуха к цоколю и установка крышки клеммной колодки предусматривает возможность навешивания пломб Госповерителя и энергоснабжающей организации.

Конструкция корпуса обеспечивает степень защиты IP 51от попадания пыли и влаги по ГОСТ 14254-96.

В соответствии с комплектом КД и конкретными требованиями заказчика, счетчики могут иметь конструктивные варианты исполнения:


- по классу точности: класс 1 или 2;
- по типу применяемого датчика тока: трансформатор, шунт, катушка Роговского и др.;
- по наличию дополнительного измерительного канала для контроля мощности в цепи нулевого провода;
- по способу тарификации: без тарификации, многотарифные с внешним управлением тарифами, многотарифные с управлением от встроенного таймера реального времени, с архивацией данных по учету энергии и профиля нагрузки;
- по типу встраиваемых в счетчик внешних интерфейсов: оптический порт, EIA232, EIA485, M-Bus, радиомодем, модем передачи данных по силовой сети, GSM-модем, CL-токовая петля, SMART- карта;
 - по наличию элементов управления нагрузкой потребителя: реле, расцепитель сети.
 - по базовому (максимальному) току согласно таблицы 1
 - по конструкции корпуса: круглый, прямоугольный, для установки на DIN-рейку;

Пример полной записи при заказе и изготовлении для счетчика класса точности 1 с измерительным шунтом в цепи тока, многотарифного со встроенными часами и архивацией данных по учету энергии, с внешним интерфейсом EIA232, с номинальным напряжением 220 В и базовым (максимальным) током 5(60) А в прямоугольном корпусе (G03): EC2726 1S-3W-E2 -220B 5(60)A – G03

Пример сокращенной записи на щитке и упаковке счетчика, если эксплуатационные параметры имеют иную маркировку или очевидны:

EC2726 1S-3W-E2

Схема обозначения вариантов исполнения счетчиков для маркировки при изготовлении:

Общий вид счетчика и места установки пломб поверителя представлен на рисунке 1

рисунок 1

Программное обеспечение

Программное обеспечение (ПО) является встроенным и выполняет функции управления режимами работы счетчика, сбора данных об измеренной электрической энергии, их математическую обработку, хранение и передачи измерительной информации.

Программа заносится в однократно программируемый микроконтроллер Holtek HT49R70A-1 в процессе производства и не может быть изменена без нарушения пломбирования счетчика и замены микроконтроллера.

Идентификационные данные программного обеспечения счетчика представлены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Наименование про- граммного обеспече- ния	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) про- граммного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
Встроенное программное обеспечение счетчика EC2726	Γ6.00416-01 12 01	1.8	0х607Е	CRC-16 (CCITT)

Уровень защиты программного обеспечения счетчика от непреднамеренных и преднамеренных изменений соответствует уровню по МИ 3286-2010 – «С».

Влияние программного обеспечения учтено при нормировании метрологических характеристик счетчика.

Метрологические и технические характеристики

Основные метрологические и технические характеристики счетчиков приведены в таблице 2. Таблица 2

Наименование характеристики	Значение характеристики
Класс точности (по ГОСТ Р 52322-2005)	1; 2
Номинальное напряжение, В	220; 240
Базовый (максимальный) ток, А	5(40); 5(50); 5(60); 10(80); 10(100)
Номинальная частота сети, Гц	50; 60
Количество тарифов	от 1 до 4*
Стартовый ток (порог чувствительности), % от I_6 при $\cos \varphi = 1$	
для класса точности: 1;	0,25;
2	0,30
Потребляемая мощность, не более:	
- в цепи тока, B·A;	0,5;
- в цепи напряжения, B·A (Вт)	6,0 (2,0)
Постоянная счетчика, имп/кВт·ч	3200***
Габаритные размеры (высота, ширина, глубина), мм, не более	
в круглом корпусе	215x134x113; *
в прямоугольном корпусе	215,5x134x58,5. *
в корпусе на DIN-рейку	125 x 105 x 64*
Масса, кг, не более	1,0
Предел допускаемой абсолютной погрешности хода часов,	1,0
с/сутки**	
- при питании от сети напряжения;	$\pm 0.5;$
- при питании от автономного источника	± 1,0
Температурный коэффициент точности хода часов**,	7-
с/градус С/сутки ч	
- в диапазоне температур от минус 20 до 45°C;	$\pm 0.15;$
- в диапазоне температур от минус 40 до минус 20°C и от 45	± 0.20
г- в дианазоне температур от минус 40 ло минус 20 С и от 45	- , ~
1 71 7	
до 55 °C Средняя наработка на отказ, ч, не менее	141000

- ** Для многотарифных счетчиков со встроенным таймером реального времени.
- *** Постоянная счетчика может быть изменена по согласованию с заказчиком.

Условия эксплуатации:

- рабочий диапазон температур, °С

от минус 40 до 55

- относительная влажность при температуре + 30 °C, % не более

90

Знак утверждения типа

Знак утверждения типа наносится на щиток счетчика офсетным или другим способом и на титульный лист паспорта типографским способом.

Комплектность средства измерений

В комплект поставки входят счетчик, паспорт, коробка упаковочная.

Поверка

осуществляется по документу ЛАФС.411152.003 Д1 «Счетчики электрической энергии однофазные электронные ЕС2726. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева» в сентябре 2011 г.

Основные средства поверки:

Установка МТЕ S 3-20.20 для поверки электросчетчиков. Диапазон напряжений (30-75; 75-150; 150-300) В. Диапазон токов (0,012-0,12; 0,12-1,2; 1,2-12; 12-80; 80-120) А Выходная мощность 600 В·А. В составе счетчик эталонный SRS 121.3 Погрешность измерений не более 0,05 %.

Сведения о методиках (методах) измерений

Отсутствуют.

Нормативные и технические документы, устанавливающие требования к изделию счетчик электрической энергии однофазный электронный ЕС2726

ГОСТ 52320-2005 «Аппаратура для измерения электрической энергии переменного тока, часть 11. Общие требования, испытания и условия испытаний»

ГОСТ 52322- 2005 «Аппаратура для измерения электрической энергии переменного тока, часть 21. Статические счетчики активной энергии классов точности 1 и 2».

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия

ТУ 4228-003-66036198-2011 «Счетчики электрической энергии однофазные электронные EC2726».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение государственных учетных операций; осуществление торговли и товарообменных операций.

Изготовитель

3AO «ЛЭМ3», 198206, г. Санкт-Петербург, Петергофское шоссе, 73 тел./факс +7(812) 303-53-60, e-mail: www.lemzspb.ru +7 (812) 303-53-56 smirnyh@lemzspb.ru

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева», зарегистрирован в Государственном реестре под № 30001-10, 190005, г. Санкт-Петербург, Московский пр., 19, тел./факс: 251-76-01/113-01-14, e-mail: info@vniim.ru.

Заместитель Руководителя Федерального агентства			
по техническому регулированию			
и метрологии		Е.П. Петросян	
	М.П.	« »	2011 г.