

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.30.004.A № 44903

Срок действия до 21 декабря 2016 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Преобразователи давления кварцевые ПДК

ИЗГОТОВИТЕЛЬ

ООО СКТБ "ЭлПА", г. Углич, Ярославская обл.

РЕГИСТРАЦИОННЫЙ № 48585-11

ДОКУМЕНТ НА ПОВЕРКУ **CATE 406231.006 МП**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 6 месяцев для преобразователей с пределом допускаемой основной приведенной погрешности ±0,025%.; 1 год для преобразователей с пределом допускаемой основной приведенной погрешности ±0,04%; ±0,06%; 2 года для преобразователей с пределом допускаемой основной приведенной погрешности ±0,1%; ±0,15%.

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **21 декабря 2011 г.** № **6412**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Е.Р.Петросян Федерального агентства

"	11		2011	-
		• • • • • • • • • • • • • • • • • • • •	 2011	1.

№ 002941

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи давления кварцевые ПДК

Назначение средства измерений

Преобразователи давления кварцевые ПДК (далее – преобразователи) предназначены для измерений абсолютного давления жидкостей и газов, а также для управления технологическими процессами.

Описание средства измерений

Принцип действия преобразователей основан на изменении частоты собственных колебаний кварцевого силочувствительного пьезоэлемента в зависимости от измеряемого давления. Измеряемое давление деформирует мембрану с закреплённым на ней силочувствительным пьезоэлементом и пропорционально изменяет частоту его собственных колебаний.

Преобразователь конструктивно выполнен в цилиндрическом корпусе из нержавеющей стали или алюминиевого сплава. Корпус имеет измерительную камеру и отсек электроники. В качестве чувствительного элемента используется резонатор кварцевый манометрический абсолютного давления (РКМА), который состоит из мембраны, силочувствительного пьезоэлемента - закрепленного на мембране, прокладки и крышки. Все детали РКМА изготовлены из монокристаллического кварца и соединены легкоплавким стеклом. Полость между мембраной и крышкой вакуумирована. РКМА установлен в измерительном отсеке и соединен через герметичные токовводы с автогенератором, который установлен в отсеке электроники.

Материалы, контактирующие с измеряемой средой (в зависимости от исполнения): 12X18H10T, алюминиевый сплав Д16, кварц монокристаллический, клей УП-5-207, защита пайки лак ЛФ- 32ЛН, кольцо резиновое уплотнительное.

Преобразователи предназначены для работы с вторичной регулирующей и показывающей аппаратурой, регуляторами и другими устройствами автоматики, машинами централизованного контроля и системами управления, работающими от частотного сигнала в диапазоне от 100 до 48000 Гц с амплитудой импульсов от 2,4 до 14 В.

Преобразователи выпускаются в четырёх исполнениях: М, МР, МТ, МРТ, которые отличаются друг от друга количеством частотных каналов.

Внешний вид приборов представлен на рисунке 1.

Модель 10 (№1 в таблице 1)

Модель 20 (№2 в таблице 1)

Модель 22 (№3 в таблице 1)

Модель 23 (№4 в таблице 1)

Рисунок 1 – общий вид преобразователей давления кварцевых типа ПДК **Метрологические и технические характеристики**

Таблина 1.

	$N_{\underline{0}}$	Нижний пре-	Верхний	Пределы допускаемой
Условное обозначение	модели	дел измере-	предел изме-	основной погрешности $\pm \gamma$, (%)
		ния, (МПа)	рения, (МПа)	
ПДК-Р-П-М-10Х			0,106	0,06; 0,1; 0,15
ПДК-Р-П-МР-10Х			0,16	0,06; 0,1; 0,15
ПДК-Р-П-МТ-10Х	1	$0.6 \cdot 10^{-3}$	0,25	0,06; 0,1; 0,15

	№	Нижний пре-	Верхний	Пределы допускаемой
Условное обозначение	модели	дел измере-	предел изме-	основной погрешности ±ү, (%)
		ния, (МПа)	рения, (МПа)	
ПДК-Р-П-МРТ-10Х			0,4	0,06; 0,1; 0,15
ПДК-Р-П-М-10Х			0,6	0,06; 0,1; 0,15
ПДК-Р-П-МР-10Х			1,0	0,06; 0,1; 0,15
ПДК-Р-П-МТ-10Х		$0.6 \cdot 10^{-3}$	1,6	0,06; 0,1; 0,15
ПДК-Р-П-МРТ-10Х			0,25	0,06; 0,1; 0,15
	1		0,6	0,06; 0,1; 0,15
		0,1	0,4	0,06; 0,1; 0,15
			1,0	0,06; 0,1; 0,15
			1,6	0,06; 0,1; 0,15
			от 2,5 до 25,0	0,06; 0,1; 0,15
			0,106	0,06; 0,1; 0,15
			0,16	0,06; 0,1; 0,15
		$0.6 \cdot 10^{-3}$	0,25	0,06; 0,1; 0,15
			0,4	0,06; 0,1; 0,15
			0,6	0,06; 0,1; 0,15
ПДК-Р-П-М-20Х			1,0	0,06; 0,1; 0,15
ПДК-Р-П-МР-20Х			1,6	0,06; 0,1; 0,15
ПДК-Р-П-МТ-20Х	2		0,106	0,025; 0,04; 0,06; 0,1; 0,15
ПДК-Р-П-МРТ-20Х			0,16	0,025; 0,04; 0,06; 0,1; 0,15
		$59.9 \cdot 10^{-3}$	0,25	0,025; 0,04; 0,06; 0,1; 0,15
		55,510	0,4	0,06; 0,1; 0,15
			0,6	0,06; 0,1; 0,15
			1,0	0,06; 0,1; 0,15
			1,6	0,06; 0,1; 0,15
		0,1	0,25	0,06; 0,1; 0,15
			0,4	0,06; 0,1; 0,15
			0,6	0,06; 0,1; 0,15
			1,0	0,06; 0,1; 0,15
			1,6	0,06; 0,1; 0,15
			0,106	0,06; 0,1; 0,15
ПДК-Р-П-М-22Х		$0.6 \cdot 10^{-3}$	0,16	0,06; 0,1; 0,15
ПДК-Р-П-МР-22Х			0,25	0,06; 0,1; 0,15
ПДК-Р-П-МТ-22Х			0,106	0,025; 0,04; 0,06; 0,1; 0,15
ПДК-Р-П-МРТ-22Х	3	45·10 ⁻³	0,16	0,025; 0,04; 0,06; 0,1; 0,15
		45/10	0,25	0,025; 0,04; 0,06; 0,1; 0,15
			0,106	0,06; 0,1; 0,15
ПДК-Р-П-М-23Х	4	$0.6 \cdot 10^{-3}$	0,16	0,06; 0,1; 0,15
			0,25	0,06; 0,1; 0,15
ПДК-Р-П-МР-23Х		3,0 -0	0,4	0,06; 0,1; 0,15
ПДК-Р-П-МТ-23Х			0,6	0,06; 0,1; 0,15
ПДК-Р-П-МРТ-23Х	4		1,0	0,06; 0,1; 0,15
		$0,6\cdot 10^{-3}$	1,6	0,06; 0,1; 0,15
		59,9·10 ⁻³	0,106	0,025; 0,04; 0,06; 0,1; 0,15
			0,16	0,025; 0,04; 0,06; 0,1; 0,15
			0,16	0,025; 0,04; 0,06; 0,1; 0,15
П 1		<u> </u>	,	

Примечание: В графе «условное обозначение» P — верхний предел измерения абсолютного давления в МПа; Π —основная погрешность; X —тип разъема.

Выходной сигнал:

- исполнение М один выходной сигнал: частотный, кГц
- исполнение MP один выходной сигнал: частотный, кГц
- исполнение MT два выходных сигнала:
 - частотный по измеряемому давлению, кГц

от 40 до 50;

от 40 до 50; от 0,3 до 5,5;

1 71
погрешности преобразователя, кГц
- исполнение МРТ – два выходных сигнала:
частотный по измеряемому давлению, кГц
частотный сигнал для компенсации температурной
погрешности преобразователя, кГц
Диапазон рабочих температур, °C

частотный сигнал для компенсации температурной

ΩТ	30	ПΩ	33;
O I	20	дО	$\mathcal{I}\mathcal{I}$

от 0,3 до 5,5;

от 0,3 до 2.

от минус 40 до плюс 85; от минус 40 до плюс 45 (для преобразователей с пределом основной погрешности не

более ±0,025% и ±0,04%)

Дополнительная погрешность от	
влияния изменения температуры	
окружающего воздуха, %/ 10 °C	от $\pm 0,005$ до $\pm 0,075$.
(в зависимости от исполнения)	
Электрическое питание U _{пит} , В	от 3 до 14.
Ток потребления должен быть не более, мА	6,0; 12,0.
(в зависимости от исполнения)	
Средняя наработка на отказ, не менее, час.	65000.
Масса (в зависимости от исполнения), кг	от 0,45 до 0,6.
Габаритные размеры преобразователей	
(в зависимости от модели), не более, мм	
(диаметр×длина):	48×109,5;
	42×106;
	40×90.0.
	,

Знак утверждения типа

Наносится методом термотрансферной печати на табличку к преобразователю и типографским способом и/или на титульный лист Руководства по эксплуатации.

Комплектность средства измерений

Таблица 2

Обозначение доку- мента	Наименование	Кол- во, шт.	Примечание
	Преобразователь давления кварцевый ПДК	1	Обозначение преобразователя в зависимости от заказа
CATE 406231.006 PЭ	Руководство по эксплуатации	1	1 экз. на каждые 10 изд., поставляемых в один адрес
САТЕ 406231.006 ПС	Паспорт	1	
САТЕ 406231.006 МП	Методика поверки	1	
	Ответная часть разъема	1	Розетка с кожухом

Поверка

осуществляется по документу «Преобразователи давления кварцевые ПДК. Методика поверки САТЕ 406231.006 МП», утвержденной ВНИИМС в 2011 году.

Перечень оборудования, необходимого для проведения поверки датчиков:

- грузопоршневые рабочие эталоны МП- 6; 60; 600 класс точности 0,02 и выше;
- манометр абсолютного давления МПА-15; класс точности 0,01;

- барометр кварцевый МД-20, предел допускаемой основной погрешности ± 30 Па;
- барометр M-67, предел допускаемой основной погрешности ± 0,8 мм рт. ст.;
- термометр стеклянный ртутный, пределы измерений от 0 до 50 0 C, цена деления 0.1 $^{\circ}$ C;
- частотомер Ч3-34, относительная погрешность кварцевого генератора $\pm 10^{-6}$;
- блок питания GPS 3030D, наибольшее значение напряжения на выходе 30 B, допускаемое отклонение $\pm 0.5\%$ от установленного значения напряжения;
- стальной баллон малой и средней емкости ГОСТ 949-73 с газообразным техническим азотом ГОСТ 9293-74 или воздухом;
- газовый баллонный редуктор ГОСТ 13861-89;
- насос форвакуумный 2НВР-0,1Д;
- запорные игольчатые вентили.

Могут быть использованы другие эталоны, с метрологическими характеристиками не хуже указанных выше.

Сведения о методиках (методах) измерений

САТЕ 406231.006 РЭ «Преобразователи давления кварцевые ПДК. Руководство по эксплуатации».

Нормативные документы, устанавливающие требования к датчикам давления ПДК

САТЕ 406231.006 ТУ «Преобразователи давления кварцевые ПДК. Технические условия».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля над соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасных производственных объектов (в том числе в нефтегазодобывающей, нефтеперерабатывающей, химической и других промышленностях).

Изготовитель ООО СКТБ «ЭлПА»

151613, г. Углич Ярославской области, Рыбинское шоссе, 20-б

тел. (факс): (48532) 5-33-53; 5-46-74

тел. (48532) 5-42-78 IP тел: (495) 788-90-95 P 2810622 e-mail: info@sktbelpa.ru http://www.sktbelpa.ru

Испытательный центр

ГЦИ СИ ФГУП «Всероссийский научно-исследовательский инсти-

тут метрологической службы» (ГЦИ СИ ФГУП «ВНИИМС»).

Адрес: 119361, г. Москва, ул. Озёрная, 46. Тел: (495) 437-55-77, факс: (495) 437-56-66.

Аттестат аккредитации № 30004-08 от 27.06.2008 г.

Ваместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

Е.Р. Петро

М. п.	«	>>	2011 г