

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.004.A № 45794

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Упрун" Южно-Уральской ЖД – филиала ОАО "Российские Железные Дороги" в границах Челябинской области

ЗАВОДСКОЙ НОМЕР 513

ИЗГОТОВИТЕЛЬ

Открытое акционерное общество "Российские Железные Дороги" (ОАО "РЖД"), г. Москва

РЕГИСТРАЦИОННЫЙ № 49292-12

ДОКУМЕНТ НА ПОВЕРКУ МП 49292-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 19 марта 2012 г. № 160

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства

Е.Р.Петросян

"...... 2012 г.

Серия СИ

№ 003899

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Упрун" Южно-Уральской ЖД - филиала ОАО "Российские Железные Дороги" в границах Челябинской области

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Упрун" Южно-Уральской ЖД — филиала ОАО "Российские Железные Дороги" в границах Челябинской области (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-ый уровень – измерительные трансформаторы тока и напряжения и счетчики активной и реактивной электроэнергии, шлюзы коммуникационные ШК-1, вторичные измерительные цепи и технические средства приема-передачи данных, образующие 4 измерительных каналов системы по количеству точек учета электроэнергии;

2-ой уровень — измерительно-вычислительный комплекс регионального Центра энергоучёта, реализован на базе устройства сбора и передачи данных (УСПД RTU-327, Госреестр № 19495-03, зав. № 001528), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень ИВК, и содержит Комплекс измерительно-вычислительный для учета электрической энергии "Альфа-Центр" (Госреестр №20481-00), который решает задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов;

3-ий уровень – измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (далее – ИВК), реализованный на базе Комплекса измерительно-вычислительного для учета электроэнергии "ЭНЕРГИЯ-АЛЬФА" (Госреестр № 35052-07), серверного оборудования (серверов сбора данных – основного и резервного, сервера управления), включающий в себя каналы сбора данных с уровня регионального Центра энергоучёта, каналы передачи данных субъектам ОРЭ.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД уровня ИВК регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ) типа 35LVS (35HVS). Устройство синхронизации системного времени УССВ обеспечивает автоматическую синхронизацию часов сервера, при превышении порога \pm 1c происходит коррекция часов сервера. Часы УСПД синхронизируются при каждом сеансе связи УСПД сервер, коррекция проводится при расхождении часов УСПД и сервера на значение, превышающее \pm 1c. Часы счетчика синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на \pm 2 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по протоколу NTP по оптоволоконной связи, задержками в линиях связи пренебрегаем ввиду малости значений. Поправка часов счетчика согласно описанию типа \pm 0,5 с, а с учетом температурной составляющей – \pm 1,5 с. Погрешность часов компонентов АИИС КУЭ не превышает \pm 5 с.

Программное обеспечение

Уровень регионального Центра энергоучета содержит Комплекс измерительновычислительный для учета электрической энергии " Альфа-Центр ", включающий в себя программное обеспечение " Альфа-Центр АРМ", " Альфа-Центр СУБД "Oracle", " Альфа-Центр Коммуникатор". ИВК " Альфа-Центр " решает задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов.

Уровень ИВК Центра сбора данных содержит Комплекс измерительновычислительный для учета электроэнергии "ЭНЕРГИЯ-АЛЬФА", включающий в себя программное обеспечение ПК "Энергия Альфа 2". ИВК "ЭНЕРГИЯ-АЛЬФА" решает задачи автоматического накопления, обработки, хранения и отображения измерительной информации.

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентификаци- онный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм цифрового идентифика- тора ПО
" Альфа- Центр"	" Альфа-Центр АРМ"	4	a65bae8d7150931f 811cfbc6e4c7189d	MD5
" Альфа- Центр"	" Альфа-Центр СУБД "Oracle"	9	bb640e93f359bab1 5a02979e24d5ed48	MD5
" Альфа- Центр"	" Альфа-Центр Ком- муникатор"	3	3ef7fb23cf160f566 021bf19264ca8d6	MD5
"ЭНЕРГИЯ- АЛЬФА"	ПК "Энергия Альфа 2"	2.0.0.2	17e63d59939159ef 304b8ff63121df60	MD5

Таблица 1. - Сведения о программном обеспечении.

- Комплекс измерительно-вычислительный для учета электрической энергии "Альфа-Центр", включающий в себя ПО, внесен в Госреестр СИ РФ под № 20481-00;
- Предел допускаемой дополнительной абсолютной погрешности, получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения;
- Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии не зависят от способов передачи измерительной информации и способов организации измерительных каналов;

- Комплексы измерительно-вычислительные для учета электроэнергии «ЭНЕРГИЯ-АЛЬФА», включающие в себя ПО, внесены в Госреестр СИ РФ под № 35052-07;
- Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3,4 нормированы с учетом ПО;
- Уровень защиты ПО от непреднамеренных и преднамеренных изменений уровень «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ приведен в таблице 2. Уровень ИВК АИИС КУЭ реализован на базе устройства сбора и передачи данных УСПД RTU-327 (Госреестр № 19495-03, зав. № 001528) и Комплекса измерительно-вычислительного для учета электрической энергии "Альфа-Центр" (Госреестр №20481-00).

Таблица 2 - Состав измерительных каналов АИИС КУЭ

	•				
Диспетчерское на- именование точки учёта		Трансформатор тока Трансформатор напряже- ния фазный пере активной/реа		Счётчик статический трёх- фазный переменного тока активной/реактивной энер- гии	Вид электроэнер- гии
			ТП "Упрун"		
1	Ввод №1 110 кВ точка измерения №1	ТРГ-110 II* класс точности 0,2S Ктт=200/1 Зав. № 4545; 4546; 4547 Госреестр № 26813-06	НАМИ-110 УХЛ1 класс точности 0,2 Ктн=110000/√3/100/√3 Зав. № 6009; 6032; 6072 Госреестр № 24218-08	А1802RALQ-P4GB-DW-4 класс точности 0,2S/0,5 Зав. № 01223888 Госреестр № 31857-06	активная реактивная
2	Ввод №2 110 кВ точка измерения №2	ТРГ-110 II* класс точности 0,2S Ктт=200/1 Зав. № 4548; 4549; 4550 Госреестр № 26813-06	НАМИ-110 УХЛ1 класс точности 0,2 Ктн=110000/√3/100/√3 Зав. № 6086; 6098; 6102 Госреестр № 24218-08	А1802RALQ-P4GB-DW-4 класс точности 0,2S/0,5 Зав. № 01223898 Госреестр № 31857-06	активная реактивная
3	Ввод Т-1 110 кВ точка измерения №3	ТРГ-110 П* класс точности 0,2S Ктт=100/1 Зав. № 4539; 4540; 4541 Госреестр № 26813-06	НАМИ-110 УХЛ1 класс точности 0,2 Ктн=110000/√3/100/√3 Зав. № 6009; 6032; 6072 Госреестр № 24218-08	А1802RALQ-P4GB-DW-4 класс точности 0,2S/0,5 Зав. № 01223939 Госреестр № 31857-06	активная реактивная
4	Ввод Т-2 110 кВ точка измерения №4	ТРГ-110 II* класс точности 0,2S Ктт=100/1 Зав. № 4542; 4543; 4544 Госреестр № 26813-06	НАМИ-110 УХЛ1 класс точности 0,2 Ктн=110000/√3/100/√3 Зав. № 6086; 6098; 6102 Госреестр № 24218-08	А1802RALQ-P4GB-DW-4 класс точности 0,2S/0,5 Зав. № 01219400 Госреестр № 31857-06	активная реактивная

Таблица 3. - Метрологические характеристики ИК (активная энергия)

Two made of the posterior in the manufacture (with many of the print)							
		Доверительные границы относительной погрешности					
	Диапазон значений	результата измерений активной электроэнергии при					
		доверительной вероятности Р=0,95:					
					Относи	тельная г	югреш-
Номер ИК		Основная относительная			ность ИК в рабочих усло-		
	силы тока	погрешность ИК, $(\pm d)$, %		виях эксплуатации, $(\pm d)$,			
		%					
		cos φ =	$\cos \phi =$	$\cos \phi =$	$\cos \phi =$	$\cos \varphi =$	$\cos \phi =$
		1,0	0,87	0,8	1,0	0,87	0,8
1-4	$0.01(0.02) I_{H_1} \le I_1 < 0.05 I_{H_1}$	1,0	1,1	1,1	1,2	1,2	1,3
(TT 0,2S; TH 0,2;	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	0,6	0,7	0,8	0,8	0,9	1,0
(11 0,2S, 1H 0,2, Сч 0,2S)	$0,2I_{H_1} \le I_1 < I_{H_1}$	0,5	0,6	0,6	0,8	0,8	0,9
C4 0,23)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	0,5	0,6	0,6	0,8	0,8	0,9

Таблица 4. - Метрологические характеристики ИК (реактивная энергия)

таолица 4. Тистрологи веские характеристики тис (реактивная эпергия)						
		Доверительные границы относительной погрешности				
	Диапазон значе-	результата измерений реактивной электроэнергии при				
		доверительной вероятности Р=0,95:				
		Основная относительная погрешность ИК, $(\pm d)$, %		Относительная погрешность		
Номер ИК				ИК в рабочих условиях экс-		
	ний силы тока			плуатации, ($\pm d$), %		
		$\cos \varphi =$	$\cos \varphi = 0.8$	$\cos \phi =$	$\cos \varphi = 0.8$	
		$0.87(\sin \varphi =$	$(\sin \varphi = 0.6)$	$0.87(\sin \varphi =$	$(\sin \varphi = 0.6)$	
		0,5)	$(\sin \psi = 0.0)$	0,5)	$(\sin \psi - 0.0)$	
1 1	$0.02I_{\rm H_1} \le I_1 <$	2,4	2,1	3,2	2,8	
1-4	0,05Ін ₁	2,4	2,1	3,2	2,0	
(ТТ 0,2S; ТН 0,2; Сч 0,5 - ГОСТ 26035-83)	$0.05 I_{\rm H_1} \le I_1 <$	1,5	1,3	1,9	1,7	
	0,2Ін ₁	1,3	1,5	1,9	1,/	
	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,1	0,9	1,3	1,2	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,0	0,9	1,2	1,1	

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 2. Нормальные условия эксплуатации:

Параметры сети:

- диапазон напряжения (0,99 1,01)Uн;
- диапазон силы тока (0,01 1,2)Ін;
- диапазон коэффициента мощности $\cos \varphi (\sin \varphi)$ 0,5 1,0 (0,87 0,5);
- температура окружающего воздуха: ТТ и ТН от минус 40 °C до 50 °C; счетчиков -от 18 °C до 25 °C; ИВКЭ от 10 °C до 30 °C; ИВК от 10 °C до 30 °C;
- частота (50 ± 0.15) Гц;
- магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 3. Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения (0.9 1.1)Uн₁; диапазон силы первичного тока (0.01 1.2)Iн₁; коэффициент мощности $\cos\phi(\sin\phi)$ 0.8 1.0 (0.6 0.5); частота (50 ± 0.4) Γ Ц;
- температура окружающего воздуха от минус 30 °C до 35 °C.

Для счетчиков электроэнергии Альфа А1800:

- параметры сети: диапазон вторичного напряжения (0.9 1.1)U $_{12}$; диапазон силы вторичного тока (0.01 1.2)I $_{12}$; коэффициент мощности $\cos\phi(\sin\phi)$ 0.8 1.0 (0.6 0.5); частота (50 ± 0.4) Γ_{11} ;
- температура окружающего воздуха от 10 °C до 30 °C;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 4. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ Р 52323-2005, в режиме измерения реактивной электроэнергии по ГОСТ 26035-83.
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 5 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчик среднее время наработки на отказ не менее 120000 часов, среднее время восстановления работоспособности 48 часов;
- УСПД среднее время наработки на отказ не менее 40000 часов, среднее время восстановления работоспособности 1 час.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства АВР;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
- в журналах событий счетчика и УСПД фиксируются факты:
 - **ü** параметрирования;
 - **ü** пропадания напряжения;
 - **ü** коррекция времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - ü счетчика;
 - **ü** промежуточных клеммников вторичных цепей напряжения;
 - **ü** испытательной коробки;
 - ü УСПД.
- наличие защиты на программном уровне:
 - **ü** пароль на счетчике;
 - ü пароль на УСПД;
 - **ü** пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания не менее 30 лет;
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 3 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) тяговой подстанции "Упрун" Южно-Уральской ЖД – филиала ОАО "Российские Железные Дороги" в границах Челябинской области типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ определяется проектной документацией на систему. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

Tuosinga 5 Rominierinoeth Filmer Ry	Кол-во, шт.		
Наименование			
Трансформаторы тока элегазовые ТРГ-110 II*			
Трансформаторы напряжения антирезонансные НАМИ-110 УХЛ1			
Устройство сбора и передачи данных (УСПД) типа RTU-327	1		
Счётчики электрической энергии трёхфазные многофункциональные Альфа А1800			
Устройство синхронизации системного времени на базе GPS-приемника	1		
Сервер управления HP ML 360 G5			
Сервер основной БД HP ML 570 G4			
Сервер резервный БД HP ML 570 G4			
Комплекс измерительно-вычислительный для учета электроэнергии "Альфа-Центр"			
Комплекс измерительно-вычислительный для учета электроэнергии "ЭНЕР- ГИЯ-АЛЬФА"			
Методика поверки			
Формуляр			
Инструкция по эксплуатации			

Поверка

осуществляется по документу МП 49292-12 "Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Упрун" Южно-Уральской ЖД - филиала ОАО "Российские Железные Дороги" в границах Челябинской области. Методика поверки", утвержденному ГЦИ СИ ФГУП "ВНИИМС" в декабре 2011 г.

Средства поверки – по НД на измерительные компоненты:

- Трансформаторы тока в соответствии с ГОСТ 8.217-2003 "ГСИ. Трансформаторы тока. Методика поверки";
- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88 "ГСИ. Трансформаторы напряжения. Методика поверки" и/или МИ 2925-2005 "Измерительные трансформаторы напряжения 35...330/√3 кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя";
- Средства измерений МИ 3195-2009 «Государственная система обеспечения единства измерений мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений».
- Средства измерений МИ 3196-2009 «Государственная система обеспечения единства измерений вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;

- Альфа A1800 по документу МП 2203-0042-2006 "Счётчики электрической энергии трёхфазные многофункциональные Альфа A1800. Методика поверки";
- УСПД RTU-300 по документу "Комплексы аппаратно-программных средств для учета электроэнергии на основе УСПД серии RTU-300. Методика поверки";
- Комплексы измерительно-вычислительные для учета электрической энергии "Альфа-Центр" по документу "Комплексы измерительно-вычислительные для учета электрической энергии "Альфа-Центр". Методика поверки", ДЯ-ИМ.466453.06МП, утвержденной ГЦИ СИ ВНИИМС в 2005 г.;
- Комплексы измерительно-вычислительные для учета электрической энергии "ЭНЕРГИЯ-АЛЬФА" по документу "ГСИ. Комплексы измерительно-вычислительные для учета электроэнергии "ЭНЕРГИЯ-АЛЬФА". Методика поверки" МП 420/446-2007, утвержденной ГЦИ СИ ФГУ "Ростест-Москва" в 2007 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе АУВП.411711.350.ЭД.ИЭ "Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии тяговых подстанций в границах ОАО "Челябэнерго" Южно-Уральской железной дороги".

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговой подстанции "Упрун" Южно-Уральской ЖД – филиала ОАО "Российские Железные Дороги" в границах Челябинской области

- 1. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2. ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3. ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 4. ГОСТ 7746–2001. Трансформаторы тока. Общие технические условия
- 5. ГОСТ 1983-2001. Трансформаторы напряжения. Общие технические условия.
- 6. ГОСТ Р 52323-2005 (МЭК 62053-22:2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 7. АУВП.411711.350.ЭД.ИЭ "Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии тяговых подстанций в границах ОАО "Челябэнерго" Южно-Уральской железной дороги".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Открытое акционерное общество "Российские Железные Дороги"

(ОАО "РЖД")

Адрес: 107174, г. Москва, Новая Басманная ул., д.2

Тел.: (499) 262-60-55 Факс: (499) 262-60-55 e-mail: <u>info@rzd.ru</u> http://www.rzd.ru/

Заявитель

Общество с ограниченной ответственностью "Инженерный центр "ЭНЕРГОАУДИТКОНТРОЛЬ" (ООО «ИЦ ЭАК»)

Юридический адрес: 125368, г. Москва, ул. Барышиха, д. 19

Почтовый адрес: 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4

Тел. (495) 620-08-38 Факс (495) 620-08-48

Испытательный центр

Государственный центр испытаний средств измерений ФГУП «ВНИИМС» (ГЦИ СИ ФГУП «ВНИИМС»)

Юридический адрес: 119361, г. Москва

ул. Озерная, д. 46

тел./факс: 8(495)437-55-77

Регистрационный номер аттестата аккредитации государственного центра испытаний средств

измерений № 30004-08 от 27.06.2008 г.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

			Е.Р. Петросян
М.П.	"	"	2012 г.