

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.004.A № 45835

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500/220/10 кВ "Фроловская" - АИИС КУЭ ПС 500/220/10 кВ "Фроловская"

ЗАВОДСКОЙ НОМЕР 0338

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "Прогресс Энерго" (ООО "Прогресс Энерго"), г. Москва

РЕГИСТРАЦИОННЫЙ № 49345-12

ДОКУМЕНТ НА ПОВЕРКУ МП 49345-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 23 марта 2012 г. № 168

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства Е.Р.Петросян

"...... 2012 г.

Серия СИ

№ 003929

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500/220/10 кВ «Фроловская» -

АИИС КУЭ ПС 500/220/10 кВ «Фроловская»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500/220/10 кВ «Фроловская»- АИИС КУЭ ПС 500/220/10 кВ «Фроловская» (далее - АИИС КУЭ), Волгоградская область., г. Фролово, предназначена для измерения активной и реактивной электрической энергии за установленные интервалы времени, а также для автоматизированного сбора, обработки, хранения и отображения информации. Результаты измерений системы могут быть использованы для коммерческих расчётов.

Описание средства измерений

АИИС КУЭ ПС 500/220/10 кВ «Фроловская» представляет собой многофункциональную, 3х-уровневую систему, которая состоит из измерительных каналов (далее - ИК), измерительновычислительного комплекса электроустановки (далее - ИВКЭ) с системой обеспечения единого времени (СОЕВ) и информационно-вычислительного комплекса (ИВК).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительные каналы, включающие измерительные трансформаторы тока (ТТ) класса точности 0,2S и 0,5S по ГОСТ 7746-2001, измерительные трансформаторы напряжения (ТН) класса точности 0,2 и 0,5 по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии типа A1802 RALQ-P4-GB-DW-4 и EA02RAL-P4B-4, класса точности 0,2S/0,5 по ГОСТ Р 52323-05 (в части активной электроэнергии); вторичные электрические цепи; технические средства каналов передачи данных.

2-й уровень - измерительно-вычислительный комплекс электроустановки АИИС КУЭ ПС 500/220/10 кВ «Фроловская», созданный на базе устройств сбора и передачи данных (далее – УСПД) типа RTU-325H (Госреестр СИ РФ № 44626-10, зав. № 005657) и технических средств приема-передачи данных.

3-й - информационно-вычислительный комплекс АИИС КУЭ ЕНЭС (Метроскоп), Госреестр СИ РФ № 45048-10. Сервер баз данных (БД) ИВК расположен в ОАО «ФСК ЕЭС».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с.

Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервалах времени, длительность которых задается программно и может составлять 1, 2, 3, 5, 10, 15, 30 минут (параметр Π_{A14}). В памяти счетчиков ведутся профили нагрузки (параметр Π_{A26}) и графики параметров сети.

Каждые 30 минут УСПД RTU-325H производит опрос всех подключенных к нему цифровых счетчиков ИК (параметр Π_{A15}). Полученная информация обрабатывается, записывается в энергонезависимую память УСПД и, по запросу с сервера базы данных ИВК, с периодичностью 1 раз в 30 минут предоставляется в базу данных ИВК. Вышеописанные процедуры выполняются автоматически, а время и частота опроса устанавливаются на этапе пуско-наладки системы.

Раз в сутки с уровня ИВК АИИС КУЭ ЕНЭС (Метроскоп) формируются и отсылаются файлы в формате XML, содержащие информацию о получасовой потребленной и выданной электроэнергии по каждому из направлений, всем заинтересованным субъектам ОРЭ (параметры Π_{A18} , Π_{A21}).

Возможность приема данных смежными системами с уровня ИВКЭ может быть обеспечена установкой программного обеспечения (ПО) «АльфаЦЕНТР» на автоматизированных рабочих местах (АРМ) пользователей смежных субъектов ОРЭ.

В АИИС КУЭ ПС 500/220/10 кВ «Фроловская» синхронизация времени производится от GPS-приемника (глобальная система позиционирования). В качестве приёмника сигналов GPS о точном календарном времени используется устройство синхронизации системного времени (УССВ), подключаемое к УСПД RTU-325H. От УССВ синхронизируются внутренние часы УСПД RTU-325H, а от них – и счетчиков АЛЬФА A1800 и ЕвроАЛЬФА, подключенных к УСПД RTU-325H. В системе автоматически поддерживается единое время во всех ее компонентах и погрешность часов компонентов АИИС КУЭ не превышает ±5 с. Сличение времени УСПД RTU-325H со временем УССВ осуществляется каждые 30 минут, корректировка времени осуществляется при расхождении со временем УССВ на величину ± 2 с. Сличение времени счетчиков со временем УСПД RTU-325H осуществляется каждые 30 минут, корректировка времени осуществляется при расхождении часов счетчика и УСПД RTU-325H на величину ± 2 с.

При длительном нарушении работы канала связи между УСПД и счетчиками на длительный срок, время счетчиков корректируется от переносного инженерного пульта. При снятии данных с помощью переносного инженерного пульта через оптический порт счётчика производится автоматическая подстройка часов опрашиваемого счётчика.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий

Программное обеспечение

Уровень ИВКЭ содержит программное обеспечение «АльфаЦЕНТР» и решает задачи автоматического накопления, обработки, хранения и отображения измерительной информации. Таблица 1 - Сведения о программном обеспечении.

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентификацион- ный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм цифрового идентифика-тора ПО
"АльфаЦЕНТР"	"Amrserver. exe"	4.05.01.05	350fea312941b2c2e 00a590fb617ae45	MD5
"АльфаЦЕНТР"	"Amrc.exe"	4.05.01.05	529af5cc49b0c00dc 58d808da82bd8a6	MD5
"АльфаЦЕНТР"	"Arma.exe"	4.05.01.05	2a2c0968fe99124a2f 9813cbd285a6f7	MD5
"АльфаЦЕНТР"	"Cdbora2.dll"	4.05.01.05	5f7bed5660c061fc89 8523478273176c	MD5
"АльфаЦЕНТР"	"encryptdll.dll"	4.05.01.05	0939ce05295fbcbbb a400eeae8d0572c	MD5
"АльфаЦЕНТР"	"alphamess.dll"	4.05.01.05	b8c331abb5e344441 70eee9317d635cd	MD5

- Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2 нормированы с учетом ПО.
- Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблице 2.

Таблица 2 – Состав измерительных каналов и их метрологические характеристики

	ізмерений	Состав измерительного канала			актеристики		Метрологические характ стики			рактери-	
Номер ИК	Наименование объекта учета, диспетчерское наименование присое- динения		Вид СИ, класс точности, коэффициент транс- формации, № Госреестра СИ	(Эбозначение, тип	Заводской номер	$K_{ ext{TT}} \cdot K_{ ext{TH}} \cdot K_{ ext{C4}}$	Наименование изме- ряемой величины	Вид энергии	Основная Погрешность ИК, ± %	Погрешность ИК в ра- бочих условиях экс- плуатации, ± %
1	2		3		4	5	6	7	8	9	10
1	ВЛ-500кВ Влжская-Восточная (W7C)	Счетчик ТН ГТ	Kt = 0,2S Ktt = 2000/1 № 26510-04 Kt = 0,2 Kth =500000/√3/100/√3 № 25474-03 Kt = 0,2S/0,5 Kch = 1 № 31857-06	A B C A B C A B C A	IOSK 550 IOSK 550 IOSK 550 TEMP 550	2093632 2093635 2093634 T09211206 T09211201 T09211211 T09211303 T09211213 T09211305	10000000	Энергия активная, $W_{ m P}$ Энергия реактивная, $W_{ m Q}$	Активная Реактивная	± 0,5 % ± 1,1 %	± 1,9 % ± 2,1 %

Продолжение таблицы 2

1	2		3		4	5	6	7	8	9	10
			$K_T = 0.2S$	Α	IOSK 550	2093630					
	TPI	LL	$K_{TT} = 2000/1$	В	IOSK 550	2093631					
	Jax		№ 26510-04	С	IOSK 550	2093633		P /Q			
	я-П 4С.)		K _T = 0,2	A	TEMP 550	T09211204		₩ .			
	Жау			В	TEMP 550	T09211208	0	тая, зная			
	ОВС Я) (Я	π.	Ктн	C	TEMP 550	T09211202	000	ИВІ			
2	ол	TH	$=500000/\sqrt{3}/100/\sqrt{3}$	A	TEMP 550	T09211302	00000001	акт	Активная	± 0,5 %	± 1,9 %
	Φ Gg		№ 25474-03	В	TEMP 550	T09211304	100	я ро		_ = 0,0 / 0	, , ,
	00кВ Фроловская-Ш (Ростовская) (W4C)			С	TEMP 550	T09211301		Энергия активная, $ m W_P$ Энергия реактивная, $ m W_Q$	Реактивная	\pm 1,1 %	± 2,1 %
	ь ВЛ-500кВ Фроловская-Шахты (Ростовская) (W4C)	Счетчик	Kт = 0,2S/0,5 Ксч = 1 № 31857-06	A18	302RALQ-P4-GB-DW4	01211042		Э. ЭнС			
		TT	$K_T = 0.5S$	A	ТЛМ-10	4475					
	e ~		$K_{TT} = 1000/5$	В	-	-					
	эда 220к I вующий)		№ 2473-05	C	ТЛМ-10	3555					
		HI	$K_T = 0.5$	A	НТМИ-10-66	6669		P /Q			
			K тн = $10000/\sqrt{3}/100/\sqrt{3}$		НТМИ-10-66	6669		≥ ×.			
	ърч ест гч.1		№ 831-69	С	НТМИ-10-66	6669	_	ная, знах			
16	Ввод 10кВ от ПС Арчеда 220кВ (КРУН-10кВ (существующий), секция 1, яч.1)	Счетчик	Кт = 0,2S/0,5 Ксч = 1 № 16666-97		EA02RAL-P4B-4	01054318	20000	Энергия активная, $ m W_{P}$ Энергия реактивная, $ m W_{Q}$	Активная ± 1,1 % Реактивная ± 2,3 %		± 4,8 % ± 2,9 %

Примечания:

- 1. В Таблице 2 в графе «Погрешность ИК в рабочих условиях эксплуатации, \pm %» приведены границы погрешности результата измерений посредством ИК при доверительной вероятности P=0,95, $\cos \phi$ =0,5 ($\sin \phi$ =0,87), токе TT, равном 2 % от Іном и температуре окружающего воздуха в месте расположения счетчиков электроэнергии от 15 °C до 30 °C.
- 2. Нормальные условия эксплуатации:
- параметры питающей сети: напряжение (220 ± 4.4) B; частота (50 ± 0.5) Гц;
- параметры сети: диапазон напряжения (0.98 1.02)U_н; диапазон силы тока (1.0 1.2)I_н; диапазон коэффициента мощности $\cos \phi$ ($\sin \phi$) 0.87(0.5); частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха: TT от минус $40\,^{\circ}$ C до $50\,^{\circ}$ C; С; Счетчиков: $(23\pm2)\,^{\circ}$ C; УСПД от $15\,^{\circ}$ C до $25\,^{\circ}$ C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (750±30) мм рт.ст. ((100±4) кПа)
- 3. Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения $(0.9 1.1)U_{\rm H1}$; диапазон силы первичного тока $(0.01 1.2)I_{\rm H1}$; коэффициент мощности $\cos \phi \ (\sin \phi) 0.5 1.0(0.6 0.87)$; частота (50 ± 0.5) Ги:
- температура окружающего воздуха от минус 30 °C до 35 °C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (750±30) мм рт.ст. ((100±4) кПа)

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения (0,9 1,1)U_{н2}; диапазон силы вторичного тока $(0,02\ (0,01\ при\ cos\phi=1)\ -\ 1,2)$ I_{н2}; диапазон коэффициента мощности $\cos\phi\ (\sin\phi)\ -\ 0,5\ -\ 1,0(0,6\ -\ 0,87)$; частота $(50\pm0,5)\ \Gamma$ ц;
- магнитная индукция внешнего происхождения 0,5 мТл;
- температура окружающего воздуха от минус 40 °C до 65 °C;
- относительная влажность воздуха (40-60) %;
- атмосферное давление (750±30) мм рт.ст. ((100±4) кПа)

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) B; частота (50 ± 1) Γ ц;
- температура окружающего воздуха от 15 °C до 30 °C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (750 ± 30) мм рт.ст. $((100\pm4) \text{ к}\Pi \text{a})$
- 4. Измерительные каналы включают измерительные трансформаторы тока по ГОСТ 7746-2001, измерительные трансформаторы напряжения по ГОСТ 1983-2001, счетчики электрической энергии по ГОСТ Р 52323-05 в режиме измерения активной электрической энергии и в режиме измерения реактивной электрической энергии;
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п.1 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на объекте филиала ОАО «ФСК ЕЭС» МЭС Центра ПС 500/220/10 кВ «Фроловская» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Надежность применяемых в системе компонентов:

- электросчетчик среднее время наработки на отказ не менее T_0 = 50 000 ч., время восстановления работоспособности T_B =168 ч.;
- компоненты ИВКЭ УСПД среднее время наработки на отказ не менее T_0 =55 000 ч., среднее время восстановления работоспособности T_B = 24 ч.;

Оценка надежности АИИС КУЭ в целом:

 $K_{\Gamma_{-AUUC}} = 0.9159 -$ коэффициент готовности;

 $T_{O_AUUC} = 1627,8$ ч. – среднее время наработки на отказ.

Надежность системных решений:

- Применение конструкции оборудования и электрической компоновки, отвечающих требованиям IEC Стандартов;
- Стойкость к электромагнитным воздействиям;
- Ремонтопригодность;
- Программное обеспечение отвечает требованиям ISO 9001;
- Мощные функции контроля процесса работы и развитые средства диагностики системы;
- Резервирование элементов системы;
- Резервирование каналов связи при помощи переносного инженерного пульта;
- Резервирование электропитания оборудования системы.

Регистрация событий:

- журнал событий счетчика:
- попытки несанкционированного доступа;
- связи со счетчиком, приведшие к каким-либо изменениям данных;
- изменение текущих значений времени и даты при синхронизации времени;
- отсутствие напряжения при наличии тока в измерительных цепях;
- перерывы питания.
- журнал событий ИВКЭ:
- ввод расчётных коэффициентов измерительных каналов (коэффициентов трансформации измерительных трансформаторов тока и напряжения);
- ввод/изменение групп измерительных каналов учёта электроэнергии для расчёта агрегированных значений электроэнергии по группам точек измерений (необходимость формирования групп измерительных каналов в промконтроллере определяется на стадии проектирования); потеря и восстановление связи со счетчиком;
- установка текущих значений времени и даты;
- попытки несанкционированного доступа;
- связи с промконтроллером, приведшие к каким-либо изменениям данных;
- перезапуски промконтроллера (при пропадании напряжения, зацикливании и т.п);
- изменение текущих значений времени и даты при синхронизации времени;
- отключение питания.
- журнал событий ИВК:
- даты начала регистрации измерений;
- перерывов электропитания;
- программных и аппаратных перезапусков;
- установка и корректировка времени;
- нарушение защиты ИВК;
- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
- привод разъединителя трансформаторов напряжения;
- клеммы низкого напряжения трансформаторов напряжения;

- корпус (или кожух) автоматического выключателя в цепи трансформатора напряжения, а так же его рукоятка (или прозрачная крышка);
- клеммы вторичной обмотки трансформаторов тока;
- промежуточные клеммники, через которые проходят цепи тока и напряжения;
- испытательная коробка (специализированный клеммник);
- крышки клеммных отсеков счетчиков;
- крышки клеммного отсека УСПД.
- защита информации на программном уровне:
- результатов измерений при передаче информации(возможность использования цифровой подписи);
- установка пароля на счетчик;
- установка пароля на промконтроллер (УСПД);
- установка пароля на сервер БД ИВК.

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 30 дней; при отключении питания не менее 35 суток;
- ИВКЭ суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 дней; при отключении питания не менее 35 суток;
- ИВК хранение результатов измерений и информации состояний средств измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии подстанции $500/220/10~\mathrm{kB}$ «Фроловская» - АИИС КУЭ ПС $500/220/10~\mathrm{kB}$ «Фроловская» типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ ПС 500/220/10 кВ «Фроловская» представлена в не 3.

Таблица 3 – Комплектность АИИС КУЭ ПС 500/220/10 кВ «Фроловская»

Таолица 5 – Rominickthocts Arme Ry 3 Пс 300/220/10 kB «Фроловская»	
Наименование	Количество
Трансформаторы тока IOSK 123/245/362/550	6 шт.
Трансформаторы тока ТЛМ-10	2 шт.
Трансформаторы напряжения емкостные ТЕМР 123/245/362/550	12 шт.
Трансформаторы напряжения НТМИ-10-66	1 шт.
Счетчики электрической энергии трехфазные многофункциональные	2 шт.
Альфа А1800	2 m1.
Счетчики электроэнергии многофункциональные типа ЕвроАЛЬФА	1 шт.
Устройства сбора и передачи данных RTU-325H	1 шт.
Сервер БД ИВК НР	1 шт.
APM оператора с ПО Windows XP и AC_PE_30	1 шт.
Переносной инженерный пульт на базе Notebook	1 шт.
Формуляр	1 экземпляр.
Инструкция по эксплуатации	1 экземпляр
Методика поверки	1 экземпляр

Поверка

осуществляется по документу МП 49345-12 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500/220/10 кВ «Фроловская» - АИИС КУЭ ПС 500/220/10 кВ «Фроловская». Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в декабре 2011 г.

Средства поверки – по НД на измерительные компоненты:

- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки» и/или МИ 2845-2003 «Измерительные трансформаторы напряжения $6/\sqrt{3}$... 35 кВ. Методика поверки на месте эксплуатации», МИ 2925-2005 «ГСИ. Измерительные трансформаторы напряжения 35 ... $330/\sqrt{3}$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя»;
- Трансформаторы тока в соответствии с ГОСТ 8.217-20003 «ГСИ. Трансформаторы тока. Методика поверки»;
 - Средства измерений МИ 3195-2009 «Государственная система обеспечения единства измерений мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений».
 - Средства измерений МИ 3196-2009 «Государственная система обеспечения единства измерений вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений».
- Счетчики типа АЛЬФА A1800 по документу МП 2203-0042-2006 "Счётчики электрической энергии трёхфазные многофункциональные Альфа A1800. Методика поверки";
- Счетчики ЕвроАльфа в соответствии с документом «Многофункциональный микропроцессорный счетчик электрической энергии типа ЕвроАльфа (EA). Методика поверки»;
- УСПД RTU-300 по документу «Устройства сбора и передачи данных RTU-325H и RTU-325T. Методика поверки. ДЯИМ.466215.005МП;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS)), номер в Государственном реестре средств измерений № 27008-04.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «21168598.422231.0338.ИС1.М. Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500/220/10 кВ «Фроловская».

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500/220/10 кВ «Фроловская» - АИИС КУЭ ПС 500/220/10 кВ «Фроловская»

- 1. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 2. ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».
- 3. ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».
- 4. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 5. ГОСТ Р 52323-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».
- 6. ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

7. «21168598.422231.0338.ИС1.М. Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500/220/10 кВ «Фроловская».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Общество с Ограниченной Ответственностью «Прогресс Энерго» (ООО «Прогресс Энерго») Юридический адрес: 121374, г. Москва, ул. Красных Зорь, д. 21 стр. 1

Почтовый адрес: 121357, г. Москва, ул. Верейская, 7.

Тел./Факс: (495) 276-07-57, 276-03-47

Испытательный центр

Государственный центр испытаний средств измерений ФГУП «ВНИИМС» (ГЦИ СИ ФГУП «ВНИИМС») Юридический адрес: 119361, г. Москва ул. Озерная, д. 46

тел./факс: 8(495)437-55-77

Регистрационный номер аттестата аккредитации государственного центра испытаний средств измерений № 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

		Е.Р.Петросян
М.Π.	""	2012 г.