ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики СПТ-К61

Назначение средства измерений

Теплосчетчики СПТ-К61 предназначены для измерений и регистрации параметров теплоносителя (расхода, температуры, давления) и тепловой энергии (количества теплоты) в водяных и паровых системах теплоснабжения.

Описание средства измерений

Принцип действия теплосчетчиков основан на преобразовании вычислителем сигналов, поступающих от измерительных преобразователей, в информацию об измеряемых параметрах теплоносителя с последующим вычислением, на основании известных зависимостей, количества тепловой энергии.

Теплосчетчики являются комбинированными средствами измерений, состоящими из функциональных блоков (составных частей) - средств измерений (СИ) утвержденного типа: тепловычислителя СПТ961 (рег. № 35477-07), расходомеров (преобразователей расхода, счетчиков), термопреобразователей сопротивления и их комплектов, преобразователей давления, типы которых приведены в таблице 1.

Таблина 1

таолица т			
Модель теплосчетчика	Тип расходомеров (рег. №)	Тип термопреобразователей сопротивления (рег. №)	Тип преобразовате лей давления (рег. №)
СПТ-К61-Э1 СПТ-К61-Э2 СПТ-К61-Э3 СПТ-К61-Э4 СПТ-К61-Э5 СПТ-К61-В1 СПТ-К61-В2 СПТ-К61-В3 СПТ-К61-У1 СПТ-К61-У2 СПТ-К61-У3 СПТ-К61-Т1 СПТ-К61-Т2 СПТ-К61-Т3 СПТ-К61-Т3 СПТ-К61-Т4	Питерфлоу РС (46814-11) МастерФлоу (31001-08) ПРЭМ (17858-11) СЭМ-01 (22324-09) Аdmag (17669-09) ВПС (19650-10) ВЭПС (14646-05) ТИРЭС (29826-10) РУС-1 (24105-11) СУР-97 (16860-07) US800 (21142-11) ВМГ (18312-03) ТЭМ (24357-08) ВСГд (23648-07) СКБ (26343-08) ВСГН/ВСТН (26405-04) ВСТ (23647-07)	КТПТР-01,-03,-06,-07,-08 (46156-10) КТПТР-04,-05,-05/1(39145-08) КТСП-Н (38878-08) КТС-Б (43096-09) ТПТ-1,-17,-19,-21 (46155-10) ТПТ-7,-8,-1115 (39144-08) ТСП-Н (38959-08) ТС-Б-Р (43287-09)	ИД (26818-09) НТ (26817-08) СДВ (28313-09) КОРУНД (47336-11)

Примечание — В скобках приведены регистрационные номера СИ в Федеральном информационном фонде по обеспечению единства измерений (номера Госреестра).

Основные функциональные возможности теплосчетчиков:

- ведение календаря, времени суток и учет времени работы;
- представление на табло текущих значений измеряемых величин;

В составе теплосчетчиков любой модели могут применяться различные типы преобразователей, указанные в таблице 1.

- регистрация в энергонезависимых архивах и представление на табло часовых, суточных, месячных и итоговых значений измеряемых величин и времени работы;
- регистрация в энергонезависимых архивах и представление на табло сообщений об изменениях настроечных параметров в процессе эксплуатации;
- диагностика неисправностей составных частей теплосчетчика, допустимых диапазонов измерений, отсутствия напряжения питания и выбор режима работы теплосчетчика при наличии диагностируемых ситуаций;
- представление измерительной и диагностической информации непосредственно или по линиям связи (коммутируемым или некоммутируемым) на внешние устройства (принтер, накопитель, компьютер, модем) посредством интерфейсов RS232C, RS485 и/или IEC1107.

Параметры электропитания, масса и габаритные размеры составных частей теплосчетчиков соответствуют требованиями их эксплуатационной документации.

Теплосчетчики соответствуют требованиям ГОСТ Р 51649-2000, а также ГОСТ Р ЕН 1434-1-2006 в части требований к метрологическим характеристикам.

Степень защиты составных частей теплосчетчиков от проникновения пыли и влаги не ниже IP54 по ГОСТ 14254-96.

Внешний вид теплосчетчика приведен на рисунке 1.

Рисунок 1 – Внешний вид теплосчетчика

Программное обеспечение

Вычислители теплосчетчиков имеют встроенное программное обеспечение (ПО). Структура и взаимосвязи частей ПО показана на рисунке 2.

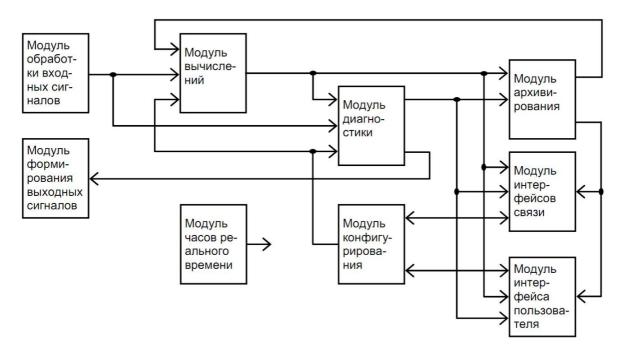


Рисунок 2

Основные функции частей программного обеспечения:

- 1) Модуль обработки входных сигналов предназначен для управления работой аналогово-цифрового преобразователя входных аналоговых сигналов, подсчета количества импульсов и фильтрации входных импульсных сигналов, мониторинга цепей входного дискретного сигнала;
- 2) Модуль вычислений предназначен для вычислений значений параметров в соответствии с функциями преобразования и вычислительными формулами;
- 3) Модуль архивирования предназначен для создания архивных записей, обработки запросов архивных данных, оптимизации цикличности перезаписи ячеек FLESH-памяти;
- 4) Модуль часов реального времени предназначен для отсчета внутреннего времени прибора и ведения календаря;
- 5) Модуль интерфейса пользователя предназначен для ввода данных и команд с клавиатуры с лицевой панели и вывода информации на встроенное табло;
- 6) Модуль интерфейсов связи предназначен для поддержки протокола связи при обмене данными с внешними устройствами через коммуникационные порты;
- 7) Модуль диагностики предназначен для контроля результатов измерений и вычислений на соответствие заданным критериям;
- 8) Модуль конфигурирования предназначен для хранения параметров внешнего оборудования, определяющих режимы работы прибора и условно-постоянных данных измеряемой среды;
- 9) Модуль формирования выходных сигналов предназначен для управления состоянием выходного дискретного сигнала.

Составные части теплосчетчиков обеспечивают защиту от несанкционированного вмешательства в их работу. Способы защиты и места пломбирования составных частей теплосчетчиков приведены в их описаниях типа и эксплуатационной документации.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений С по МИ 3286-2010.

Идентификационные данные ПО теплосчетчиков приведены в таблице 2.

Таблица 2

Наименование	Идентификацион	Номер версии	Цифровой	Алгоритм
программного	ное наименование	(идентификационный	идентификатор	вычисления
обеспечения	программного	номер)	программного	цифрового
	обеспечения	программного	обеспечения	идентификато
		обеспечения	(контрольная	pa
			сумма	программного
			исполняемого	обеспечения
			кода)	
Резидентное				
программное	961.X	v01	D8A4	CRC-16
обеспечение	901.A	VUI	DoA4	CKC-10
РАЖГ.00219-90				
37 4	v ~	TTT0 <1 1		

Х=1 для модели тепловычислителей СПТ961.1

Х=2 для модели тепловычислителей СПТ961.2

Метрологические и технические характеристики

Диапазоны измерений и пределы допускаемых значений относительных погрешностей теплосчетчиков в водяных системах теплоснабжения соответствуют значениям, приведенным в таблице 3.

Таблица 3

1 worman e			
Измеряемая величина	Диапазон измерений	Пределы допускаемых значений относительной погрешности, %	Примечание
Количество теплоты, ГДж (Гкал), тепловая $0-10^9$		$\pm (2+4\Delta t_{\scriptscriptstyle H}/\Delta t+0.01~G_{\scriptscriptstyle B}/G)$	Класс С ГОСТ Р 51649, класс 1 ГОСТ Р ЕН 1434
(Гкал), тепловая мощность, ГДж/ч (Гкал/ч)	0 – 10	$\pm (3+4\Delta t_{H}/\Delta t+0.02 \text{ G}_{B}/\text{G})$	Класс В ГОСТ Р 51649, класс 2 ГОСТ Р ЕН 1434
Объем, м ³ ; масса, т	$0 - 10^9$	$\pm 1,0; \pm 1,5; \pm 2,0^{1)}$	
Расход, м ³ /ч (т/ч)	$0-10^6$	$\pm 1,0; \pm 1,5; \pm 2,0^{1}$	
Температура, °С	0 - 160	± (0,35+0,005t) °C	Погрешность абсолютная
Разность температур,°С	3 - 150	$\pm (0,5+12/\Delta t)$	
Давление, МПа (кгс/см 2)	0-30 (0-300)	± 1,0	Погрешность приведенная

¹⁾ Определяется пределами допускаемых значений относительной погрешности расходомеров. Δt и $\Delta t_{\rm H}$ – значения температуры, разности температур и нижнего предела диапазона ее измерений соответственно, °C.

G и $G_{\scriptscriptstyle B}$ — значение расхода и значение верхнего предела диапазона измерений расходомера, ${\rm M}^3/{\rm q}$.

Примечание - Класс теплосчетчиков установлен с учетом метрологических характеристик его составных частей в соответствии с требованиями ГОСТ Р ЕН 1434-1-2006.

Диапазоны измерений и пределы допускаемых значений относительных погрешностей теплосчетчиков в паровых системах теплоснабжения соответствуют значениям, приведенным в таблице 4.

Таблица 4

Измеряемая величина	Диапазон измерений	Пределы допускаемых значений относительной погрешности, %	Примечание
Количество теплоты, ГДж			
(Гкал), тепловая	$0-10^9$	$\pm 4,0$	
мощность, ГДж/ч (Гкал/ч)			
Объем, м ³ ; масса, т	$0-10^9$	± 2,0	
Расход, м ³ /ч (т/ч)	$0-10^6$	± 2,0	
Температура, °С	100 – 500	$\pm (0.25+0.002t) ^{\circ}\text{C}^{\ 1)}$ $\pm (0.35+0.005t) ^{\circ}\text{C}^{\ 2)}$	Погрешность абсолютная
Давление, МПа (кгс/см 2)	0-30 (0-300)	± 1,0	Погрешность приведенная

¹⁾ При применении термопреобразователей сопротивления с классом допуска А.

Пределы допускаемых значений относительной погрешности δ при измерении тепловой энергии и тепловой мощности теплоносителя (воды, пара) в отдельном трубопроводе, выраженные в процентах, соответствуют значениям, определяемым из выражения:

$$\delta = \pm [2.5 + 45/(t - t_x)],$$

где: $t \ge 30$ °C – значение температуры теплоносителя, °C;

 $t_x \le 20~^{\circ}\text{C}$ – условно постоянное значение температуры холодной воды, $^{\circ}\text{C}$.

Пределы допускаемых значений относительной погрешности при измерении времени работы соответствуют $\pm 0{,}01~\%$.

Теплосчетчики и их составные части устойчивы к установившимся отклонениям напряжения питания частотой (50 ± 1) Γ ц в диапазоне изменения от 187 до 242 В.

Теплосчетчики и их составные части прочны и герметичны при воздействии пробного давления, соответствующего не менее 1,25 от значения рабочего давления.

Теплосчетчики обеспечивают свои технические характеристики в рабочих условиях эксплуатации, характеризующихся следующими воздействующими факторами:

- температура окружающего воздуха в диапазоне от 5 до 50 °C;
- относительная влажность воздуха не более 80 % при температуре 35 °C:
- атмосферное давление в диапазоне от 84 до 106,7 кПа;
- синусоидальная вибрация частотой от 5 до 25 Γ ц с амплитудой смещения не более 0,1 мм.

Средняя наработка на отказ 50000 ч.

Средний срок службы 12 лет.

Знак утверждения типа

наносится на лицевую панель вычислителя теплосчетчика в виде наклейки и на титульный лист эксплуатационной документации типографским способом.

²⁾ При применении термопреобразователей сопротивления с классом допуска В.

t –значение температуры, °С.

Комплектность средства измерений

Наименование	Обозначение	Кол	Примечание
Теплосчетчик	СПТ-К61	1 шт.	Модель согласно заказу
Паспорт	ЕСШМ.421412.007 ПС	1экз.	
Руководство по эксплуатации (раздел 11 «Методика поверки»)	ЕСШМ.421412.007 РЭ	1экз.	
Эксплуатационная документация на составные части			Руководство по эксплуатации, паспорт, методика поверки согласно комплекту поставки составной части

Поверка

осуществляется по методике раздела 11 «Методика поверки» руководства по эксплуатации ЕСШМ.421412.007 РЭ «Теплосчетчики СПТ-К61», утвержденной ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева» 14 декабря 2011 г.

Перечень эталонов, применяемых при поверке:

- 1. Установка расходомерная: диапазон воспроизведения расхода в соответствии с диапазоном поверяемого расходомера, значения пределов относительной погрешности не более 1/3 от пределов допускаемой относительной погрешности измерений поверяемого расходомера;
- 2. Паровой термостат типа ТП-5 для воспроизведения температуры кипения воды с погрешностью не более ± 0.03 °C;
- 3. Нулевой термостат или сосуды Дьюара для воспроизведения температуры плавления льда с погрешностью не более \pm 0,02 °C;
 - 4. Эталонный платиновый термометр сопротивления 2 разряда по ТУ 50-479-84;
 - 5. Манометр грузопоршневой МП-6, МП-60 или МП-600 по ГОСТ 8291-83;
- 6. Комплекс для измерения давления цифровой ИПДЦ, диапазон воспроизведения давления от 0,1 до 1,6 МПа, пределы основной погрешности 0,02 и 0,05 %;
 - 7. Стенд СКС6. ТУ 4217-023-23041473-98:

Допускается применение других средств поверки и вспомогательного оборудования, предусмотренных НД на поверку составных частей теплосчетчика, включая средства поверки термопреобразователей сопротивления по ГОСТ 8.461-2009 и преобразователей давления по МИ 1997-89.

Сведения о методиках (методах) измерений

Методика измерений приведена в руководстве по эксплуатации ЕСШМ.421412.007 РЭ «Теплосчетчики СПТ-К61».

Нормативные и технические документы, устанавливающие требования к теплосчетчикам СПТ-К61

- 1. ГОСТ Р 51649-2000. «Теплосчетчики для водяных систем теплоснабжения. Общие технические условия».
 - 2. ГОСТ Р ЕН 1434-1-2006. «Теплосчетчики. Часть 1. Общие требования».
 - 3. ЕСШМ.421412.007 ТУ. «Теплосчетчики СПТ-К61. Технические условия».

Рекомендации по области применения в сфере государственного регулирования обеспечения единства измерений

осуществление торговли и товарообменных операций.

Изготовители

Общество с ограниченной ответственностью, научно-производственное предприятие «ЭЛЕКОМ».

ООО НПП «ЭЛЕКОМ», Россия, 620087, г. Екатеринбург, ул. Походная, д. 76, оф. 123. т/ф (343) 257-75-09, 257-40-42

E-mail: elecom@elecom-ural.ru

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», 190005, Санкт-Петербург, Московский пр., 19 Тел. (812) 251-76-01, факс (812) 713-01-14 e-mail: info@vniim.ru, регистрационный номер № 30001-10.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р.Петросян

М.п.

« » 2012 г.