ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки автоматизированные спектрометрические контроля теплоносителя первого контура АЭС СЖГ-1001

Назначение средства измерений

Установки автоматизированные спектрометрические контроля теплоносителя первого контура АЭС СЖГ-1001 (далее — установки) предназначены для автоматизированного квазинепрерывного измерения объемной активности реперных гамма-излучающих радионуклидов 131 I — 135 I, 24 Na, 42 K, 88 Kr, 133 Xe, 135 Xe (далее радионуклиды) и их суммарной объемной активности в теплоносителе первого контура АЭС.

Описание средства измерений

Установка представляет собой программно-аппаратный комплекс, состоящий из спектрометрического монитора СМ-1001 и устройства накопления и обработки информации УНО-1001.

В состав спектрометрического монитора СМ-1001 входят: спектрометрический полупроводниковый блок детектирования БД с детектором из особо чистого германия; криостат БД; датчик измерения уровня азота; камера измерительная КИ-1001; сосуд Дьюара; узел измерительный ИК-1001; узел клапанов УК-1002; блок накопления и обработки БНО-1001 на базе спектрометрического устройства ИУ-1001; оборудование комбинированной системы охлаждения детектора на базе машины Стирлинга; защитный корпус; стол-подставка СП-1001.

В состав устройства накопления и обработки информации УНО-1001 входят: модуль управления на базе промышленного компьютера (ППК); универсальный контроллер УНО-1001; блок питания, электрощит, бесперебойный источник питания и монтажный шкаф.

Принцип действия установки основан на автоматизированном цикле отбора теплоносителя из пробоотборной линии, прохождении его через измерительный узел ИК-1001 с целью регистрации спектров гамма-излучения радионуклидов, сброса проанализированной пробы теплоносителя в систему организованных протечек и промывке измерительного узла для подготовки установки к следующему циклу отбора теплоносителя и проведения измерений.

Поток гамма-квантов, испускаемых поступившим в сосуд ИК-1001 теплоносителем, попадая в чувствительный объем детектора, взаимодействует с материалом чувствительной области последнего – германием. Это приводит к образованию в чувствительном объеме неравновесных носителей заряда – электронов и дырок, которые под воздействием электрического поля, создаваемого приложенным к детектору напряжением, дрейфуют к электродам детектора. Дрейф неравновесных носителей сопровождается протеканием тока через электроды во внешней по отношению к детектору цепи. Генерируемые детектором импульсы тока поступают на вход зарядочувствительного предусилителя, расположенного в БД, который осуществляет преобразование импульсов тока на его входе в импульсы напряжения на его выходе (посредством интегрирования импульсов тока).

Амплитуда импульсов напряжения на выходе предусилителя пропорциональна заряду на входе предусилителя и энергии, полностью теряемой гамма-квантом при взаимодействии с материалом чувствительной области детектора. Поток импульсов от предусилителя поступает на вход спектрометрического устройства ИУ-1001, где производится преобразование амплитуд импульсов в цифровой код. Цифровые коды амплитуд импульсов накапливаются в буфере спектрометрического устройства в виде приборных спектров гамма-излучения, снятых за промежуток времени измерения.

Автоматизированное управление установкой и ее работа в различных режимах обеспечиваются инсталлированным в ППК комплектом программного обеспечения (ПО).

Программное обеспечение

Комплект ПО, предназначенный для автоматизированного управления установкой и ее функционирования, включает в себя:

- ПО серии SpectraLineGP;
- ПО «Монитор»;

ПО SpectraLineGP является метрологически значимой частью комплекта ПО и защищено электронным ключом. Без электронного ключа в автоматическом режиме и режиме обслуживания пользователь не имеет доступа к спектрометрическому устройству ИУ-1001 и не может сохранять на диске ППК файлы спектра. Электронный ключ запрограммирован на работу с одним спектрометрическим трактом установки.

Программное обеспечение SpectraLineGP используется для обеспечения следующих функций:

- одновременное накопление и визуализация спектров;
- автоматический поиск пиков с заданным уровнем обнаружения;
- расчет параметров пиков положения, полуширины, площади;
- градуировка спектрометрического тракта установки по энергии, полуширине, по форме пика;
 - сохранение результатов расчета в текстовом файле;
 - отображение наблюдаемых значений и архивных данных в виде таблицы;
- отображение наблюдаемых значений и архивных данных в виде графиков трендов наблюдаемых величин;
- калибровка по эффективности регистрации в точечной геометрии и геометрии ИК-1002, получение аппроксимирующих "кривых" для выбранной геометрии измерений;
 - установка перечня контролируемых радионуклидов;
 - автоматическое определение радионуклидного состава;
- расчет объемной активности радионуклидов и погрешности результатов измерений;
- определение фона и значений минимально измеряемых активностей контролируемых радионуклидов;
 - определение метрологически аттестуемых характеристик установки;
- сохранение измеренных спектров и результатов обработки в базе данных для анализа многократных измерений;
 - обработка одновременно нескольких спектров при калибровке;
 - количественный и визуальный контроль за качеством калибровок;
 - настройка параметров спектрометрического устройства;
- управление режимами измерений, расчета и сохранения результатов спектрометрического тракта старт, стоп, поиск пиков, идентификация, расчет объемной активности радионуклидов и погрешности измерений, сохранение результатов измерений и прочие режимы работы спектрометрического тракта при осуществлении процедур калибровки и градуировки.

Таблица 1 — Идентификационные данные ПО SpectraLineGP.

Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) про- граммного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычис- ления цифрового идентификатора программного обеспечения
SpectraLineGP	1.4.2152	45f14411	CRC32
	ционное на- именование программного обеспечения	идентифика- ционное на- именование программного обеспечения (идентифика- ционный но- мер) про- граммного обеспечения	идентифика- ционное на- именование программного обеспечения (идентифика- щионный но- мер) про- граммного обеспечения (контрольная сум- ма исполняемого обеспечения кода)

ПО «Монитор» обеспечивает управление режимами работы установки СЖГ-1001, обмен данными с верхним уровнем автоматизированной системы радиационного контроля АСРК (в случае применения установки в составе АСРК) и защиту метрологически значимого ПО SpectraLineGP от несанкционированного доступа к изменению настроек.

ПО «Монитор» выполняет следующие функции:

- отображение результатов расчета объемной активности и погрешности, полученных ПО SpectraLineGP;
- взаимодействие с ПО верхнего уровня ACPK: передачу измеренной и диагностической информации программному обеспечению системы верхнего уровня ACPK и получение команд управления с верхнего уровня ACPK.

Таблица 2 — Идентификационные данные ПО«Монитор»

Наименование программного обеспечения	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) про- граммного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычис- ления цифрового идентификатора программного обеспечения
Монитор	Установка контроля радионуклидов СЖГ, программа УНО	1.3	DD161A00	CRC32

Обеспечена защита ПО от несанкционированного доступа по каналам передачи данных. Доступ к изменению настроек установки и сервисным функциям предоставляется только авторизованным пользователям с соответствующими полномочиями.

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений согласно МИ 3286-2010 соответствует уровню «А».

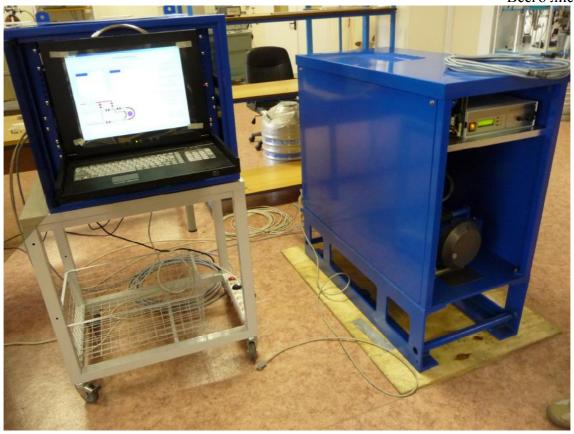
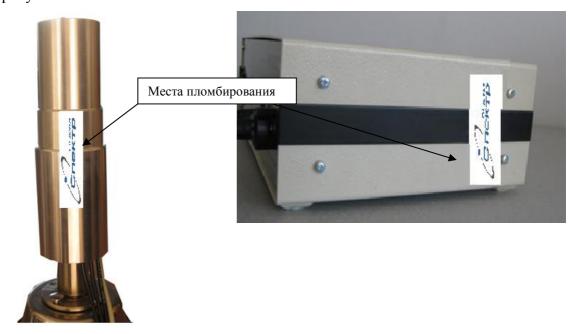



Рисунок 1 — Общий вид установки автоматизированной спектрометрической контроля теплоносителя первого контура АЭС СЖГ-1001

Все технические средства (ТС) установки должны быть опломбированы в соответствии с конструкторской документацией. Места пломбирования от несанкционированного доступа указаны на рисунке 2.

Блок детектирования

Спектрометрическое устройство ИУ-1001

Рисунок 2 — Место пломбирования от несанкционированного доступа

Метрологические и технические характеристики

Диапазон энергий регистрируемого гамма-излучения от 0.05 до 3.0 МэВ. Интегральная нелинейность функции преобразования, не более 0.04 %. Диапазон измерения:

Поддиапазоны измерений установки в различных режимах эксплуатации:

Режим работы установки	Рабочий ИК	Поддиапазоны измерений объемной активности, Бк/м ³
Штатный	Штатный ИК	от $3,7\cdot10^6$ до $1\cdot10^{10}$
Переключение ИК	-	от 3,7·10 ⁸ до 1·10 ⁹
Аварийный	Аварийный ИК	от 3,7·10 ⁷ до 3,7·10 ¹²

Энергетическое разрешение БД, не хуже:

Время формирования	Энергия гамма-квантов	Энергетическое разрешение, не более
	59,6 кэВ	1,05 кэВ
3 мкс	661 кэВ	1,46 кэВ
	1332 кэВ	2,11 кэВ

Время установления рабочего режима после охлаждения детектора не более 30 мин. Нестабильность показаний за 24 ч непрерывной работы, не более 0,02 %. Электропитание от сети переменного тока напряжением 220_{-15}^{+10} В,

частотой (50+1/-3) Гц.

Потребляемая мощность, не более

Габаритные размеры (длина×ширина×высота), мм, не более

- спектрометрический монитор СМ-10011165×500×1053;
- устройство накопления и обработки информации УНО-1001........... 621×723×600. Масса, кг, не более

Климатические условия применения:

- относительная влажность при температуре 25 °С...... до 80 %,
-до 95 % при +30 °C в течение 6 часов;
- атмосферное давление от 84 до 106,7 кПа.

Пределы допускаемой дополнительной погрешности измерений при изменении температуры окружающего воздуха до верхнего/нижнего рабочего значения относительно нормальных условий, не более $\pm 10~\%$.

Установка устойчива к воздействию синусоидальных вибраций в диапазоне частот от 1 до 120 Гц с ускорением 1g.

По сейсмостойкости установка соответствует требованиям к категории II по НП-031-01 и устойчива к сейсмическим воздействиям (проектное землетрясение) 7 баллов по шкале MSK-64. Высотная отметка при размещении установки - до 20 м. По размещению установка относится к группе «А».

Степень защиты оболочек - IP33S по ГОСТ 14254-96.

Установка устойчива к воздействию электромагнитных помех в соответствии с ГОСТ Р 50746-2000, группа исполнения по устойчивости к помехам III; критерий качества функционирования при испытаниях на помехоустойчивость С по ГОСТ Р 50746-2000.

 Средняя наработка на отказ, не менее.
 10 000 ч.

 Средний срок службы, не менее.
 10 лет.

Знак утверждения типа

Знак утверждения типа наносится на корпус или на таблички, прикрепленные к установке, фотоспособом и на титульный лист руководства по эксплуатации типографским способом или специальным штампом.

Комплектность средства измерений

Установки поставляются в комплекте, указанном в таблице 3.

Таблица 3 — Комплектность установки

Наименование	Кол-во, шт.	Примечание
Полупроводниковый блок детектирования гамма-	1 компл.	
излучения GCD-10180-30 с комбинированной системой		
охлаждения детектора и датчиком уровня азота		
Блок накопления и обработки БНО-1001	1	
Камера измерительная КИ-1001	1	
Узел измерительный ИК-1001	1	
Узел клапанов УК-1001	1	
Стол-подставка СП-1001 с защитным корпусом	1	
Устройство накопления и обработки информации	1	
УНО-1001 в монтажном шкафу		
Комплект ЗИП-1001	1 компл.	
Комплект монтажный и принадлежностей КП-1001	1 компл.	
Комплект программного обеспечения	1 компл.	
Комплект эксплуатационной документации согласно ведо-	1	
мости		

Поверка

осуществляется в соответствии с разделом 4 «Методика поверки» руководства по эксплуатации ПБАВ.412131.005РЭ, утвержденным ГЦИ СИ ФБУ «ЦСМ Московской области» 17 ноября $2011\ \Gamma$.

Основное поверочное оборудование:

Набор эталонных (образцовых) спектрометрических источников гамма-излучения ОСГИ-Р активностью (10^3 - 10^5) Бк с погрешностью не более 4 %: 241 Am, 60 Co, 152 Eu, 137 Cs.

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений изложены в разделе 2 руководства по эксплуатации ПБАВ.412131.005РЭ и документе «Методика радиационного контроля «Определение объемной активности гамма - излучающих радионуклидов в технологических средах с использованием автоматизированных гамма-спектрометрических установок», свидетельство об аттестации № МРК 40090.1H558 от 13.12.2011, выданное ФГУП «ВНИИФТРИ».

Нормативные документы, устанавливающие требования к установкам автоматизированным спектрометрическим контроля теплоносителя первого контура АЭС СЖГ-1001

- 1. ГОСТ 27451-87 Средства измерений ионизирующих излучений. Общие технические условия.
- 2. ГОСТ 27452-87 Аппаратура контроля радиационной безопасности на атомных станциях. Общие технические требования.
- 3. ГОСТ 29075-91 Системы ядерного приборостроения для атомных станций. Общие требования.
- 4. ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.
- 5. ГОСТ 8.033-96 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерения активности, потока, плотности потока альфа, бета-частиц и фотонов радионуклидных источников.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Установки применяются для осуществления производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

Общество с ограниченной ответственностью «Внедрение Научных Исследований и Инжиниринг «Спектр» (ООО «ВНИИ «Спектр»)

Юридический адрес: проезд 4806, д.6, Зеленоград, Москва, 124460 Фактический адрес: ул. Юности, д.8 оф.611, Зеленоград, Москва, 124482

Телефон: (499) 995-02-65, e-mail: info@vniispectre.ru

Испытательный центр

ГЦИ СИ ФБУ «ЦСМ Московской области»

Юридический адрес: пгт Менделеево Солнечногорского р-на Московской обл. 141570, тел. (495) 994-22-10, факс (495) 994-22-11, e-mail: <u>info@mencsm.ru</u>; <u>www.mencsm.ru</u> Аттестат аккредитации №30083-08 от 23 декабря 2008 г.

М.п.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

 2012 -

Е.Р. Петросян