

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

DE.C.28.005.A № 46169

Срок действия до 18 апреля 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Весы лабораторные электронные CUBIS

ИЗГОТОВИТЕЛЬ

Фирма "Sartorius Weighing Technology GmbH", Германия

РЕГИСТРАЦИОННЫЙ № 49613-12

ДОКУМЕНТ НА ПОВЕРКУ ГОСТ Р 53228-2008

интервал между поверками 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 18 апреля 2012 г. № 240

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Е.Р.Петросян
Федерального агентства	
	2012 r

№ 004316

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Весы лабораторные электронные CUBIS

Назначение средства измерений

Весы лабораторные электронные CUBIS (далее – весы) предназначены для измерений массы при статическом взвешивании различных веществ и материалов в производственных, научных и учебных лабораториях на предприятиях различных отраслей промышленности и сельского хозяйства.

Описание средства измерений

Принцип действия весов основан на электромагнитной компенсации системой автоматического уравновешивания воздействия, вызванного весом груза, с последующим преобразованием компенсационного усилия системы в электрический сигнал. Результат взвешивания выводится на жидкокристаллический дисплей весов.

Конструктивно весы представляют собой два модуля, соединенных системой обмена данных – взвешивающий модуль и модуль терминала, предназначенный для выбора режимов работы весов и индикации результатов взвешивания. Весы имеют верхнее расположение грузоприемной платформы.

Взвешивающий модуль оснащен следующими дополнительными устройствами (указанными ниже в соответствии с ГОСТ Р 53228-2008):

- устройством установки по уровню (автоматическим или ручным) (Т.2.7.1)
- устройствами установки нуля (Т.2.7.2):
 - полуавтоматическим устройством установки нуля (Т.2.7.2.2)
 - автоматическим устройством установки нуля (Т.2.7.2.3)
 - устройством первоначальной установки нуля (Т.2.7.2.4)
- устройством слежения за нулем (может быть отключено) (Т.2.7.3)
- устройствами тарирования (Т.2.7.4):
 - устройством уравновешивания тары (Т.2.7.4.1)
 - устройством взвешивания тары (Т.2.7.4.2)
 - устройством предварительного задания массы тары (Т.2.7.5).

Дополнительно взвешивающий модуль оснащен следующими функциями:

- устройством автоматической юстировки «isoCAL» (при изменении температуры окружающего воздуха или по времени);
- устройством полуавтоматической юстировки (при выборе соответствующего подпункта меню модуля терминала).

Взвешивающие модули выпускаются в разных модификациях, отличающихся метрологическими и техническими характеристиками 2.7S; 3.6P; 6.6S; 524S; 3203S; 5202S; 14202S.

Взвешивающие модули могут быть оснащены стационарной ветрозащитной витриной нескольких модификаций:

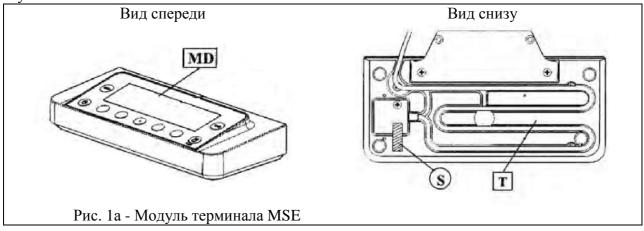
- DE стеклянная открываемая вручную (для 5203S; 5202S);
- DR из нержавеющей стали (для 5203S; 5202S);
- DU стеклянная открываемая вручную (для 524S; 5203S; 5202S);
- DA стеклянная открываемая автоматически (для 524S; 5203S; 5202S);
- DI стеклянная открываемая автоматически, со встроенным ионизатором (для 524S; 5203S; 5202S);
- DM стеклянная открываемая автоматически (для 2.7S; 6.6S; 3.6P);
- D0 без ветрозащитной витрины (для 14202S).

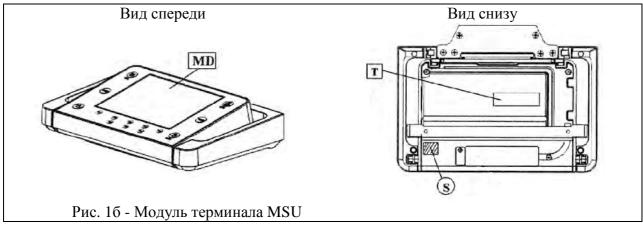
Модули терминала выпускаются в разных модификациях, отличающихся способом управления и исполнением дисплея:

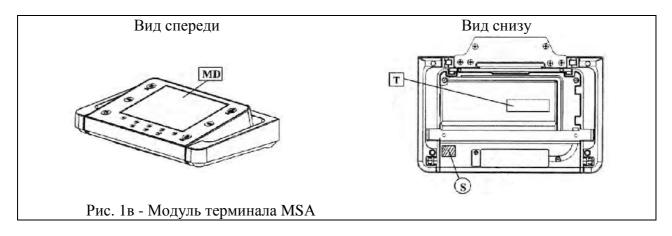
MSA – сенсорный цветной графический дисплей высокого разрешения;

MSU – чёрно-белый графический дисплей высокого разрешения, управление клавишами;

MSE – чёрно-белый жидкокристаллический дисплей, управление клавишами.

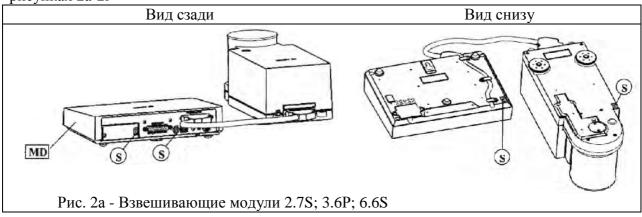

Весы имеют следующие режимы работы, не связанные со взвешиванием (прикладные программы меню модуля терминала):

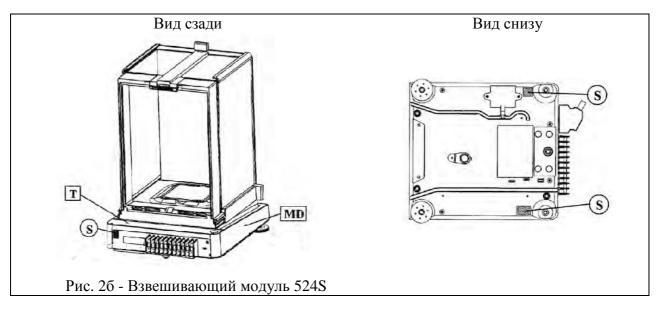

- подсчет числа объектов, имеющих примерно одну и ту же массу;
- суммирование;
- формулирование;
- статистическая обработка результатов взвешивания;
- вычисление процентных соотношений и др.

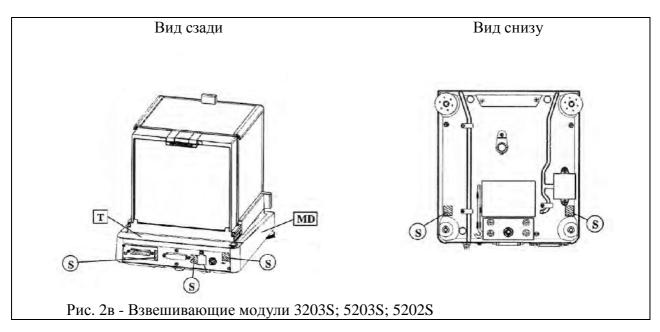

Весы могут оснащаться интерфейсами передачи данных: USB, RS 232C, Ethernet для автоматического протоколирования в соответствии со стандартами ISO/GLP, и устройством для карт памяти SD для хранения протоколов измерений.

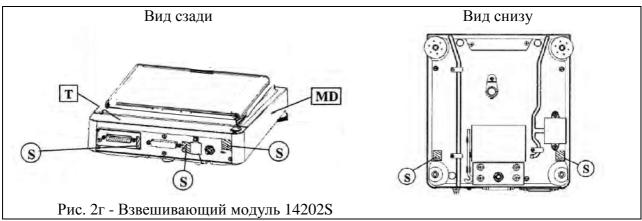
Идентификационные маркировки и защитные пломбы

Идентификационные маркировки и защитные пломбы наносятся на каждый модуль. Схемы нанесения маркировок и пломб на модули терминала представлены на рисунках 1a-1в.

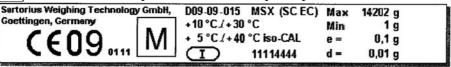

На рисунках 1а-1в использованы следующие обозначения:


MD –метрологические характеристики: Min, Max, е и d.


Т - обозначение модели модуля терминала


S - защитная пломба

Схемы нанесения маркировок и пломб на взвешивающие модули представлены на рисунках 2а-2г



На рисунках 2а-2г использованы следующие обозначения:

MD – наклейка с метрологическими характеристиками Min, Max, e, и d, например:

Т - обозначение модели весов, например:

 $|\mathbf{S}|$ - защитная пломба

Обозначение модели весов складывается из позиций: $X_1 X_2 - X_3$ CE- X_4 , где

 X_1 - модификация модуля терминала (MSA, MSU, MSE)

 X_2 - модификация взвешивающего модуля (524S; 3203S; 5203S; 5202S; 14202S; 2.7S; 3.6P; 6.6S)

 X_3 - вариант исполнения устройства установки весов по уровню. 0 – ручное устройство установки весов по уровню, 1 – автоматическое устройство установки весов по уровню.

CE- обозначение соответствия весов требованиям директивы Европейского союза 2009/23/EC (ранее 90/384/EEC)

 X_4 – вид исполнения ветрозащитной витрины (D0, DE, DR, DU, DA, DI, DM).

Например, весы MSU14202S-0CE-D0, в комплекте: взвешивающий модуль 14202S, с ручным устройством установки по уровню, модуль терминала с чёрно-белым графическим дисплеем высокого разрешения и управлением клавишами, без ветрозащитной витрины.

Программное обеспечение

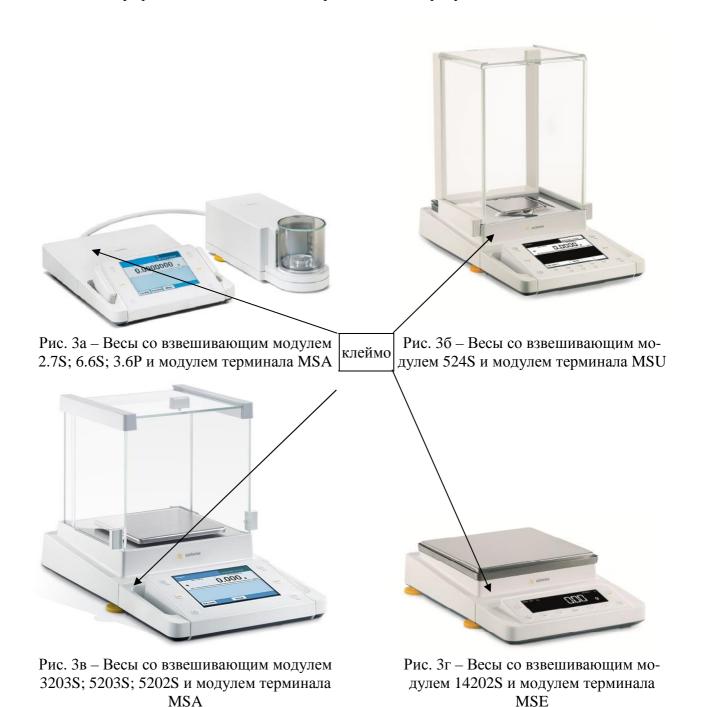
Весы оснащены встроенным разделенным программным обеспечением. Идентификационное наименование программного обеспечения и наименование версии высвечивается при обращении к одноименному подпункту меню весов. Основные функции программного обеспечения: обработка компенсационного усилия электромагнитной системы взвешивания, и последующий пересчет его в единицы массы; хранение данных юстировки, результатов измерений, вывод данных на экран.

Программное обеспечение весов заложено в микроконтроллере взвешивающего модуля в процессе производства и защищено от доступа и изменения, пломбами. Программное обеспечение разделено на метрологически значимую и незначимую части, метрологически незначимая часть содержит информацию о количестве прикладных программ в режиме работы, не связанном со взвешиванием.

Обновление метрологически значимой части программного обеспечения в процессе эксплуатации весов не предусмотрено.

Идентификационные данные метрологически значимой части программного обеспечения (в таблице – ΠO)

Наименование	Идентификационное	Номер версии	Цифровой	Алгоритм
ПО	наименование	(идентификационный	идентификатор	вычисления
	ПО	номер) ПО	ПО	цифрового
				идентифика-
				тора ПО
YAC01XXX	YAC01XXX	00-39-XX	-	-


Примечания:

XXX – обозначение в наименовании и в идентификационном наименовании ПО модификации блока управления весов (из числа MSA, MSU, MSE)

XX - обозначение двухзначного цифрового кода, связанного с количеством прикладных программ в номере версии (идентификационном номере) ПО.

Уровень защиты от непреднамеренных и преднамеренных изменений соответствует уровню «А» по МИ 3286-2010.

Фотография внешнего вида весов представлена на рисунках 3a - 3r.

Места нанесения поверительного клейма (знака поверки в виде наклейки) обозначены стрелками.

Метрологические и технические характеристики

Наименование характеристики	Значение характеристики для весов							
Модификация взвешивающего модуля		3.6P	6.6S	524S	3203S	5203S	5202S	14202S
1 Класс точности по ГОСТ Р 53228-2008	I							
2 Максимальная нагрузка Мах, г	2,1	1,1	6,1	520	3200	5200	5200	14200
		2,1						
		3,1						
3 Поверочное деление, е, мг	1	1	1	1	10	10	100	100
4 Действительная цена деления d, мг	0,0001	0,001	0,001	0,1	1	1	10	10
		0,002						
		0,005						
5 Число поверочных делений, n	2100	1100	6100	520000	320000	520000	52000	142000
		2100						
		3600						
6 Диапазон выборки массы тары	от 0 до Мах							
7 Диапазон предварительного задания массы тары	от и ло мах							
	до Мах до 1,1 г							
8 Диапазон температур, °С	от + 5 до + 40 (с включенным устройством автоматической юстировки «isoCAL»)							
2 72	от + 15 до + 25 0,01 0,1 0,1 10 100 100 1000 1000							
9 Минимальная нагрузка Min, мг		0,1	0,1	10	100	100	1000	1000
10 Пределы допускаемой погрешности весов при								
поверке (в эксплуатации):								
от 0 до 50000 е включ.	$\pm 0.5 \text{ e } (\pm 1 \text{ e})$ $\pm 0.5 \text{ e } (\pm 1 \text{ e})$							
св. 50000 е до 200000 е включ.	- ± 1,0 e (± 2 e)							
св. 200000 е до Мах	- ± 1,5 e (± 3 e)							
11 Размах показаний	0,5 e 1,5 e							
12 Время установления показаний, с, не более	10	8	8	3	2	2	1	1,5
13 Размеры грузоприемной платформы, мм	Ø 20	Ø 30	Ø 30	85x85	140x140	140x140	140x140	206x206
14 Параметры источника питания:	$(100 - 240) \frac{+10\%}{-100}$							
входное напряжение, В / частота, Гц	$(100 \div 240)^{-15\%} / 50 \div 60$							
15 Потребляемая мощность, Вт, максимальная	15							

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации типографским способом.

Комплектность средства измерений

Наименование	Количество, шт.
Весоизмерительный модуль	1
Модуль терминала	1
Грузоприемная платформа	1
Сетевой адаптер	1
Руководство по эксплуатации	1

Поверка

осуществляется по Приложению Н ГОСТ Р 53228–2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».

Эталонные средства измерений, используемые при поверке: гири класса точности E_2 по ГОСТ 7328.

Сведения о методиках (методах) измерений

Методика измерений представлена в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к весам

ГОСТ 8.021–2005 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений массы»

ГОСТ Р 53228–2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания»

Техническая документация фирмы «Sartorius Weighing Technology GmbH», Германия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление деятельности в области охраны окружающей среды;

осуществление торговли и товарообменных операций;

проведение банковских, налоговых и таможенных операций;

выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

фирма «Sartorius Weighing Technology GmbH», Германия

Weender landstrasse 94 – 108, 37075 Goettingen, Germany,

Tel: +49.551.308.0, Fax: +49.551.308.3289, http://www.sartorius.de

Испытательный центр

ГЦИ СИ ФГУП «УНИИМ», 620000, г. Екатеринбург, ул. Красноармейская, 4, тел. (343) 350-26-18, факс: (343) 350-20-39, e-mail: <u>uniim@uniim.ru</u>.

Аттестат аккредитации № 30005-11 от 03.08.2011 г.

Заместитель Руководителя
Федерального агентства по техническому
регулированию и метрологии

	-	_	r				
H	υ		lei	rn.	\sim	0	TIT
- 1 2				1 L J	1)		н

М.п.	«	_>>	 2012 г.