

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.004.A № 46239

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности (АИИС КУЭ) ООО "Сиквист Клоужерз"

заводской номер 001

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "Техносоюз" (ООО "Техносоюз"), г. Москва

РЕГИСТРАЦИОННЫЙ № 49682-12

ДОКУМЕНТ НА ПОВЕРКУ МП 49682-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 20 апреля 2012 г. № 263

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	
Федерального агентства	

Е.Р.Петросян

"...... 2012 г.

Серия СИ

№ 004376

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности (АИИС КУЭ) ООО «Сиквист Клоужерз».

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии и мощности (АИИС КУЭ) ООО «Сиквист Клоужерз» (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-ый уровень – информационно-измерительный комплекс (ИИК), включающий в себя трансформаторы тока (далее – ТТ) по ГОСТ 7746-2011, трансформаторы напряжения (далее – ТН) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии по ГОСТ Р 52323-2005 и ГОСТ 30206-94, в режиме измерений активной электроэнергии; и по ГОСТ Р 52425-2005 и ГОСТ 26035-83 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-й уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации, Сервер АИИС КУЭ, устройства синхронизации времени на базе GPS-приемника типа УСВ-1, автоматизированные рабочие места персонала (APM) и программное обеспечение (ПО) «Пирамида 2000».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мошности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по сотовым каналам связи поступает на верхний уровень, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, хранение измерительной информации, ее накопление, оформление справочных и отчетных документов. Передача информации в организации—участники оптового рынков электроэнергии осуществляется посредством интернет-провайдера.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень счетчиков и ИВК. АИИС КУЭ оснащена устройством синхронизации системного времени на основе УСВ-1, синхронизирующих собственное системное время по сигналам поверки времени, получаемым от GPS-приемника, входящего в состав УСВ-1. Погрешность синхронизации не более ±0,5 с. Время сервера АИИС КУЭ, синхронизировано с временем УСВ-1, син-

хронизация осуществляется один раз в час, вне зависимости от наличия расхождения. Сличение времени часов счетчиков с ИВК производится во время сеанса связи со счетчиками (каждые 30 минут). Корректировка времени осуществляется при расхождении с временем часов ИВК ± 1 с (не чаще одного раза в сутки). Погрешность часов компонентов системы не превышает ± 5 с.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000», в состав которого входят программы указанные в таблице 1. «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами «Пирамида 2000».

Таблица 1 – Идентификационные данные ПО

Таолица 1 – идентификационные данные ПО							
	Идентификацион-	Номер версии (идентифика-	Цифровой иденти- фикатор ПО (кон-	Алгоритм вы- числения циф-			
Наименование ПО	ное наименование	ционный но-	трольная сумма ис-	рового иденти-			
	ПО	мер) ПО	полняемого кода)	фикатора ПО			
1	2	* '	,				
1	2	3	4	5			
Модуль вычисления			55710 101 11 0100 65 1				
значений энергии и	CalcClients.dll	3	e55712d0b1b219065d	MD5			
мощности по группам			63da949114dae4				
точек учета							
Модуль расчета неба-			b1959ff70be1eb17c83				
ланса энер-	CalcLeakage.dll	3	f7b0f6d4a132f	MD5			
гии/мощности			1700100-41321				
Модуль вычисления							
значений энергии по-	CalcLosses.dll	3	d79874d10fc2b156a0	MD5			
терь в линиях и транс-	CalcLosses.dii	3	fdc27e1ca480ac	MD3			
форматорах							
Общий модуль, содер-							
жащий функции, ис-							
пользуемые при вычис-			52e28d7b608799bb3c	150.5			
лениях различных зна-	Metrology.dll	3	cea41b548d2c83	MD5			
чений и проверке точ-							
ности вычислений							
Модуль обработки зна-							
чений физических ве-			6f557f885b73726132				
личин, передаваемых в	ParseBin.dll	3	8cd77805bd1ba7	MD5			
бинарном протоколе			0Cu770030u10a7				
* *							
Модуль обработки зна-							
чений физических ве-	DIEC 411	2	48e73a9283d1e66494	MD5			
личин, передаваемых по	ParseIEC.dll	3	521f63d00b0d9f	MD5			
протоколам семейства							
МЭК							
Модуль обработки зна-			201.164071 64077				
чений физических ве-	ParseModbus.dll	3	c391d64271acf4055b	MD5			
личин, передаваемых по		_	b2a4d3fe1f8f48				
протоколу Modbus							
Модуль обработки зна-							
чений физических ве-	ParsePiramida.dll	3	ecf532935ca1a3fd321	MD5			
личин, передаваемых по	i arboi mannida.dii	3	5049af1fd979f	111100			
протоколу Пирамида							

Окончание таблицы 1

1	2	3	4	5
Модуль формирования				
расчетных схем и кон-			530d9b0126f7cdc23e	
троля целостности дан-	SynchroNSI.dll	3	cd814c4eb7ca09	MD5
ных нормативно-			Cu614C4C07Ca09	
справочной информации				
Модуль расчета величи-				
ны рассинхронизации и	VerifyTime.dll	3	1ea5429b261fb0e288	MD5
значений коррекции вре-	verify rinic.un	3	4f5b356a1d1e75	WIDS
мени				

Системы информационно-измерительные контроля и учета энергопотребления «Пирамида», включающее в себя ПО «Пирамида 2000», внесены в Госреестр №21906-11. ПО «Пирамида 2000» аттестовано на соответствие требованиям нормативной документации, свидетельство об аттестации № АПО-209-15 от 26 октября 2011 года, выданное ФГУП «ВНИИМС».

Оценка влияния ПО на метрологические характеристики СИ – влияния нет.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» (по МИ 3286-2010).

Метрологические и технические характеристики

Таблица 2 – Состав измерительных каналов и их метрологические характеристики

Номер	Наимено-	Состав измерительного канала Ви			Вид	_	ические ха- стики ИК	
точки измерений	вание точки из- мерений	TT	ТН	Счетчик	ИВК (ИВКЭ)	электро энергии	Основная погреш- ность, %	Погрешность в рабочих условиях, %
1	РУ-6 кВ ООО «Си- квист Кло- ужерз» Фидер 3	· ·	ЗНОЛП-6У2 6000:√3/ 100:√3 Кл. т. 0,5 Зав. № 1004844 Зав. № 1004836 Зав. № 1004841		ПО «Пира- мида 2000»	актив- ная реак- тивная	±1,2 ±2,8	±3,3 ±5,3
2	РУ-6 кВ ООО «Си- квист Кло- ужерз» Фидер 12		ЗНОЛП-6У2 6000:√3/ 100:√3 Кл. т. 0,5 Зав. № 1004165 Зав. № 1004184 Зав. № 1004166	030807092	ПО «Пира- мида 2000»	актив- ная реак- тивная	±1,2 ±2,8	±3,3 ±5,3

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 3. Нормальные условия эксплуатации:
- параметры сети: напряжение (0,95 \div 1,05) Uном; ток (1 \div 1,2) Іном; соѕ ϕ = 0,9 инд.;
- температура окружающей среды (20 ± 5) °C;

- 4. Рабочие условия эксплуатации:
- параметры сети: напряжение $(0.9 \div 1.1)$; тока $(0.01 \div 1.2)$ Іном; коэффициент мощности соѕф $(\sin \phi) 0.5 \div 1.0 (0.87 \div 0.5)$;
- 5. Допускаемая температура окружающей среды TT и TH от минус 40 до +70°C; счетчиков от минус 40 до +60°C; УСПД от минус 10 до +50°C; ИВК от плюс 10 до +25°C;
- 6. Погрешность в рабочих условиях указана для тока 0.05 Іном, $\cos \varphi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 до +40 °C.
- 7. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ Р 52323-2005 и ГОСТ 30206-94, в режиме измерения реактивной электроэнергии по ГОСТ Р 52425-2005 и ГОСТ 26035-83.
- 8. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 6 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном на ООО «Сиквист Клоужерз» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 9 Все измерительные компоненты системы утверждены и внесены в Госреестр средств измерений.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик ПСЧ-4ТМ.05М среднее время наработки на отказ не менее 140000 часов, среднее время восстановления работоспособности не более 168 ч;
- счетчик ПСЧ-4ТМ.05 среднее время наработки на отказ не менее 90000 часов, среднее время восстановления работоспособности не более 168 ч;

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации–участники оптового рынков электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и ИВК;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
 - сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 10 лет;
- сервер АИИС КУЭ хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

Знак утверждения типа наносятся типографским способом на титульные листы эксплуатационной документации АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 — Комплектность АИИС КУЭ

Наименование	Количество
Измерительный трансформатор тока ТЛО-10	4 шт.
Измерительный трансформатор напряжения ЗНОЛП-6У2	6 шт.
Счетчик электрической энергии ПСЧ-4ТМ.05	1 шт.
Счетчик электрической энергии ПСЧ-4ТМ.05М	1 шт.
Методика поверки	1 шт.
Паспорт-формуляр	1 шт.

Поверка

осуществляется по документу МП 49682-12 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии и мощности (АИИС КУЭ) ООО «Сиквист Клоужерз». Измерительные каналы. Методика поверки», утвержденному ФГУП «ВНИИМС» в 2011 г.

Средства поверки – по НД на измерительные компоненты:

- Трансформаторы тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- ПСЧ-4ТМ.05М по методике поверки ИЛГШ.411152.146РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.146РЭ;
- ПСЧ-4ТМ.05 по методике поверки ИЛГШ.411152.126РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.126РЭ;
- УСВ-1 по документу ИВК «Усройство синхронизации времени УСВ-1. Методика поверки ВЛСТ 221.00.000МП».

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Автоматизированная информационноизмерительная система коммерческого учёта электроэнергии ООО «Сиквист Клоужерз». Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к АИИС КУЭ

ГОСТ 1983-2001	«Трансформаторы напряжения. Общие технические условия».
ГОСТ 7746-2001	«Трансформаторы тока. Общие технические условия».
ΓΟCT P 52323-2005	«Аппаратура для измерения электрической энергии переменного тока.
	Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».
ΓΟCT P 52425-2005	«Аппаратура для измерения электрической энергии переменного тока.
	Частные требования. Часть 23. Статические счетчики реактивной энер-
	гии».
ΓOCT 22261-94	Средства измерений электрических и магнитных величин. Общие тех-
	нические условия.
ΓΟCT P 8.596-2002	ГСИ. Метрологическое обеспечение измерительных систем. Основные

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Техносоюз» (ООО «Техносоюз»)

Юридический адрес: 105122 г. Москва, Щелковское шоссе, д. 9

положения.

Почтовый адрес: 119270, г. Москва, Лужнецкая набережная, д.2/4, строение 37, 1 этаж

Тел.: (495) 639–91–50 Факс: (495) 639–91–52 E-mail: <u>info@t-souz.ru</u>

www.t-souz.ru

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМС»

Адрес: 119361, Москва, ул. Озерная, 46

Тел.: 8 (495) 437 55 77 Факс: 8 (495) 437 56 66

Электронная почта: office@vniims.ru

Аттестат аккредитации № 30004-08 от 27.06.2008 года.

Заместитель			
Руководителя Федерального		Е.Р. Петросян	H
агентства по техническому			
регулированию и метрологии			
	М.п.	«»	2012 г.