

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.010.A № 46306

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО "Подгоренский цементник"

ЗАВОДСКОЙ НОМЕР 193

ИЗГОТОВИТЕЛЬ
ООО "ЭнергоСнабСтройПроект", г. Владимир

РЕГИСТРАЦИОННЫЙ № 49755-12

ДОКУМЕНТ НА ПОВЕРКУ МП 1261/446-2012

интервал между поверками 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 05 мая 2012 г. № 302

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Р	уководителя
Федерального	агентства

Е.Р.Петросян

"......" 2012 г.

Серия СИ

№ 004456

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Подгоренский цементник»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Подгоренский цементник» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, для осуществления эффективного автоматизированного коммерческого учета и контроля потребления электроэнергии и мощности потребляемой с ОРЭМ по расчетным точкам учета, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в программно-аппаратный комплекс (ПАК) ОАО «АТС» и прочим заинтересованным организациям в рамках согласованного регламента.

Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления энергопотреблением.

Описание средства измерений

АИИС КУЭ, выполненная на основе ИВК «Альфа Центр» (Госреестр № 44595-10), представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные комплексы (ИИК) АИИС КУЭ состоят из трех уровней:

1-ый уровень — измерительные трансформаторы напряжения (TH), измерительные трансформаторы тока (TT), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту — счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-ой уровень — измерительно-вычислительные комплексы электроустановок (ИВКЭ) включающие устройства сбора и передачи данных (УСПД) RTU-325L Госреестр № 37288-08, устройство синхронизации системного времени (УССВ) УССВ-16HV производства ООО «Эльстер Метроника», технические средства приема-передачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-ий уровень – информационно-вычислительный комплекс (ИВК), включает в себя сервер ООО «Межрегионсбыт», устройство синхронизации системного времени (УССВ) УССВ-16HVS, автоматизированное рабочее место (АРМ), а так же совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие задачи:

- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- периодический (1 раз в сугки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех ИИК;
- хранение результатов измерений и данных о состоянии средств измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;

- периодический (1 раз в сугки) и/или по запросу автоматический сбор служебных параметров (изменения параметров базы данных, пропадание напряжения, коррекция даты и системного времени);
- передача результатов измерений в организации-участники оптового рынка электроэнергии в рамках согласованного регламента;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени);

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

Цифровой сигнал с выходов счетчиков, посредством линий связи RS-485 поступает в УСПД. УСПД производит вычисление получасовых значений электроэнергии на основании считанного профиля мощности с учётом коэффициентов трансформации (которые в счётчиках для обеспечения возможности быстрой замены установлены равными 1).

Сервер ООО «Межрегионсбыт», с периодичностью 1 раз в 24 ч по GSM-каналу опрашивает контроллер RTU-325L, считывает с него 30-минутный профиль мощности и журналы событий для каждого канала учета за сутки.

Считанные значения записываются в базу данных (под управлением СУБД Oracle).

Сервер производит вычисление получасовых значений электроэнергии на основании считанного профиля мощности, в автоматическом режиме 1 раз в сутки считывает из базы данных получасовые значения электроэнергии, формирует и отправляет по выделенному каналу связи отчеты в формате XML всем заинтересованным субъектам.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для обеспечения единства измерений используется единое календарное время. В СОЕВ входят часы УССВ, счетчиков, УСПД, сервера БД. В качестве базового прибора СОЕВ используется устройство синхронизации времени УССВ-16HVS производства ООО «Эльстер Метроника.

УССВ-16HVS установлен в шкафу сервера в ЦСОИ ООО «Межрегионсбыт». Сравнение показаний часов сервера БД и УССВ происходит с цикличностью один раз в час. Синхронизация осуществляется при расхождении показаний часов сервера БД и УССВ на величину более чем ± 500 мс.

УСПД RTU-325L с подключенным к нему УССВ-16HVS обеспечивает погрешность хода часов УСПД не более $\pm 1,0$ с/сут.

Сравнение показаний часов УСПД и УССВ-16HVS происходит с цикличностью один раз в час. Синхронизация осуществляется при расхождении показаний часов УСПД и УССВ-16HVS на величину более чем $\pm 1,0$ с.

Сравнение показаний часов счетчиков и УСПД происходит при каждом обращении к счетчику, но не реже одного раза в 30 минут, синхронизация осуществляется при расхождении показаний часов счетчика и УСПД на величину более чем ± 1 с

Программное обеспечение

В состав ПО АИИС КУЭ входит: ПО счетчиков электроэнергии и ПО СБД АИИС КУЭ. Программные средства СБД АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных (СУБД) и прикладное ПО ИВК «Альфа ЦЕНТР», ПО СОЕВ.

Состав программного обеспечения АИИС КУЭ приведён в таблице 1.

Таблица 1

Наименование программного обеспечения	Наименование программ- ного модуля	Наименова- ние файла	Номер версии про- граммного обес- печения	Цифровой иденти- фикатор программ- ного обеспечения	Алгоритм вычисления цифрового идентификатора программного обеспечения	
ПО «Альфа ЦЕНТР»	программа-планировщик опроса и передачи данных	amrserver.exe		582b756b2098a6dabb e52eae57e3e239		
	драйвер ручного опроса счетчиков и УСПД	amrc.exe		b3bf6e3e5100c068b96 47d2f9bfde8dd	MD5	
	драйвер автоматического опроса счетчиков и УСПД	amra.exe	12.01.01.01	764bbe1ed87851a015 4dba8844f3bb6b		
	драйвер работы с БД	cdbora2.dll	12.01.01.01	7dfc3b73d1d1f209cc4 727c965a92f3b		
	библиотека шифрования пароля счетчиков A1800	encryptdll.dll		0939ce05295fbcbbba4 00eeae8d0572c		
	библиотека сообщений планировщика опросов	alphamess.dll		b8c331abb5e3444417 0eee9317d635cd		

ПО ИВК «Альфа ЦЕНТР» не влияет на метрологические характеристики АИИС КУЭ. Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительно-информационных комплексов АИИС КУЭ приведен в Таблице 2. Метрологические характеристики АИИС КУЭ приведены в Таблице 3.

Таблица 2

K	Наименование	Состав измерительно-информационных комплексов					Вид
ИИК	объекта	Трансформатор	Трансформатор	Счетчик электри-	УСПД	СЕРВЕР	Электро-
Š		тока	напряжения	ческой энергии	УСПД	CELDEL	энергии
1	2	3	4	5	6	7	8
1	ПС 220/10 кВ Цементник, В- 220 кВ 1Т	ТРГ-220 II* Кл. т. 0,2S 300/1 Зав. № 152 Зав. № 151 Зав. № 153 Госреестр № 33677-07	HAMИ-220 УХЛ1 Кл. т. 0,2 220000/√3/100/√3 Зав. № 1742 Зав. № 1739 Зав. № 1740 Госреестр № 20344-05	A1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Зав. № 01210178 Госреестр № 31857-11	RTU-325L Зав. № 006245 Госреестр № 37288-08	HP ProLi- ant ML110 G6	Активная Реактивная

K	Наименование	Состав измерительно-информационных комплексов					Вид
ИИК	объекта	Трансформатор	Трансформатор	Счетчик электри-	УСПД	СЕРВЕР	Электро-
ž	оовскій	тока	напряжения	ческой энергии	эспд	CELDE	энергии
1	2	3	4	5	6	7	8
2	ПС 220/10 кВ Цементник, В- 220 кВ 2Т	ТРГ-220 II* Кл. т. 0,2S 300/1 Зав. № 154 Зав. № 156 Зав. № 155 Госреестр № 33677-07	НАМИ-220 УХЛІ Кл. т. 0,2 220000/√3/100/√3 Зав. № 1741 Зав. № 1737 Зав. № 1738 Госреестр № 20344-05	A1802RALXQ- P4GB-DW-4 Кл.т. 0,2S/0,5 Зав. № 01210177 Госреестр № 31857-11	RTU-325L 3ab. № 006245 Госреестр № 37288-08	ant ML110	Активная Реактивная

Таблина 3

Гаолица 3						
Пределы допускаемой относительной погрешности измерения активной электрической энергии в ра-						
		бочих условиях	эксплуатации АИ	ИС КУЭ		
Номер ИИК	2050	$\delta_{1(2)}$ %,	$\delta_{5\%},$	$\delta_{20\%},$	$\delta_{100\%}$,	
помер иих	cosφ	$I_{1(2)} \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{M3M} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100\%} \le I_{_{13M}} \le I_{120\%}$	
	1,0	±1,2	±0,8	±0,8	±0,8	
1, 2	0,9	±1,2	$\pm 0,9$	± 0.8	± 0.8	
TT-0,2S; TH-0,2;	0,8	±1,3	$\pm 1,0$	±0,9	±0,9	
Сч-0,2S	0,7	±1,5	±1,1	$\pm 0,9$	±0,9	
	0,5	±2,0	±1,4	±1,2	±1,2	
Пределы допус	каемой относ	сительной погре	ешности измерен	ия реактивной эле	ктрической энер-	
гии в рабочих условиях эксплуатации АИИС КУЭ						
Номер ИИК	cosφ	$\delta_{1(2)\%}$,	$\delta_{5\%},$	$\delta_{20~\%},$	$\delta_{100~\%},$	
помер иих		$I_{2\%} \le I_{M3M} < I_{5\%}$	$I_{5 \%} \le I_{_{\rm H3M}} < I_{_{\rm 20 \%}}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	I_{100} % \leq $I_{u_{3M}} \leq$ I_{120} %	
1, 2	0,9	±2,5	±1,5	±1,2	±1,2	
TT-0,2S; TH-0,2;	0,8	±1,7	±1,1	±0,8	±0,8	
Сч-0,5	0,7	±1,4	±0,9	±0,7	±0,7	
C4-0,5	0,5	±1,2	± 0.8	±0,6	±0,6	

Ход часов компонентов АИИС КУЭ не превышает ±5 с/сут.

Примечания:

- 1. Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- $3.\ B$ качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0.95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98·Uном до 1,02·Uном;
 - сила тока от Іном до 1,2-Іном, $\cos \mathbf{j} = 0.9$ инд;
 - температура окружающей среды: от 15 до 25 °C.
- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9 · Uном до 1,1 · Uном,
 - *сила тока от 0,01 Іном до 1,2 Іном;*
 - температура окружающей среды:
 - для счетчиков электроэнергии от плюс 5 до плюс 35 °C;
 - для трансформаторов тока по *ГОСТ* 7746-2001;
 - для трансформаторов напряжения по ГОСТ 1983-2001.
- 6. Трансформаторы тока по ГОСТ 7746, трансформаторы напряжения по ГОСТ 1983, счетчики по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и ГОСТ 26035-83 в режиме измерения реактивной электроэнергии.

7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии Альфа А1800 среднее время наработки на отказ не менее 120000 часов:
- УСПД RTU-325L среднее время наработки на отказ не менее 100000 часов;
- сервер среднее время наработки на отказ не менее 256 554 часов.

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Tв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УСПД, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД(функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчик электроэнергии Альфа А1800 тридцатиминутный профиль нагрузки в двух направлениях не менее 172 суток; при отключении питания не менее 10 лет;
- УСПД суточные данные о тридцатиминутных приращениях электроэнергии по каждому каналу и электроэнергии потребленной за месяц по каждому каналу не менее 45 суток; при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средств измерений не менее 3.5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИ-ИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4

Таблица 4

$N_{\underline{0}}$	11	Тип	Кол.
п/п	Наименование	1 1111	KOJI.
1	2	3	4
1	Трансформатор тока	ΤΡΓ-220 II*	6
2	Трансформатор напряжения	НАМИ-220 УХЛ1	6
3	Электросчетчик	A1802	2
4	Шкаф УСПД на базе RTU-325L	MC-240L	1
5	Шкаф УССВ на базе УССВ-16HVS	MC-225	1
6	Устройство синхронизации системного времени	УССВ-16HVS	1
7	GSM модем	Teleofis RX100-R	1
8	Коммутатор	D-Link DES-1005A	1
9	Догрузочный резистор	MP3021-H-100/√3-40BA	6
10	Догрузочный резистор	MP3021-T-1A-20 BA	6
11	Сервер	HP ProLiant ML110 G6	1
12	Источник бесперебойного питания	Smart-UPS 1000 RM 2U	1
13	GSM модем	IRZ Mc52iT	1
14	Паспорт – формуляр	ЭССО.411711.АИИС.193 ФО	1
15	Методика поверки	МП 1261/446-2012	1

Поверка

осуществляется по документу МП 1261/446-2012 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Подгоренский цементник». Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» в феврале 2012 г.

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- − ТН по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Счетчик Альфа A1800 по методике поверки МП-2203-0042-2006, утвержденным ГЦИ СИ «ВНИИМ им. Д.И. Менделеева» 19 мая 2006 г.;
- RTU-325L по методике поверки ДЯИМ.466.453.005 МП, утвержденной ГЦИ СИ ФГУП «ВНИИМС» в 2008 г.;
- ИВК АльфаЦЕНТР по методике ДЯИМ.466453.007 МП, утвержденной ГЦИ СИ ФГУП «ВНИИМС» в 2010 г.;
- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS). (Госреестр № 27008-04);
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;
- Термометр по ГОСТ 28498, диапазон измерений от минус − 40 до плюс 50°С, цена деления 1°С.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика (методы) измерений количества электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ЗАО «Подгоренский це-

ментник». Свидетельство об аттестации методики (методов) измерений № 0001/2012-01.00324-2011 от 10 января 2012 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ ЗАО «Подгоренский цементник»

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6 ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2S и 0.5S.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «ЭнергоСнабСтройПроект»

Адрес (юридический): Российская Федерация, 600000 г. Владимир, ул. Б. Московская, д. 22А

Адрес (почтовый): 600021, г.Владимир, ул.Мира, д.4а, офис №3

Телефон: (4922) 42-46-09, 34-67-26

Факс: (4922) 42-44-93

Заявитель

ООО «ЭнергоСнабСтройПроект»

Адрес (юридический): Российская Федерация, 600000 г. Владимир, ул. Б. Московская, д. 22А

Адрес (почтовый): 600021, г.Владимир, ул.Мира, д.4а, офис №3

Телефон: (4922) 42-46-09, 34-67-26

Факс: (4922) 42-44-93

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»).

Аттестат аккредитации № 30010-10 от 15.03.2010 года.

117418 г. Москва, Нахимовский проспект, 31

Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11

Факс (499) 124-99-96

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.П. «___» _____ 2012г.