

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.34.004.A № 46771

Срок действия до 01 июня 2017 г.

НА<mark>ИМЕН</mark>ОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ **Счетчики электрической энергии статические однофазные "АТЛАС 1"**

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "Системы телемеханики" (ООО "СИСТЕЛ"), г. Москва.

РЕГИСТРАЦИОННЫЙ № 50081-12

ДОКУМЕНТ НА ПОВЕРКУ **59703777-422860-920МП**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 16 лет

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 01 июня 2012 г. № 388

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Ваместитель Руководителя		Е.Р.Петросян
Федерального агентства		
	n n	2012 г

Серия СИ № 005020

ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Счетчики электрической энергии статические однофазные «АТЛАС 1»

Назначение и область применения

Счетчики электрической энергии статические однофазные «АТЛАС 1» (далее - счетчик) класса 0,5S и 1 предназначены для измерения активной и реактивной энергии и мощности в режиме многотарифности в однофазных цепях переменного тока с частотой 50 Гц. Счетчик подключается к цепям тока и напряжения непосредственно.

Описание средств измерений

Измерительная схема счетчика состоит из трансформатора тока или измерительного шунта, резистивного делителя напряжения, аналого-цифрового преобразователя, микропроцессора.

Счетчик имеет энергонезависимые память для хранения учетных и конфигурационных данных, часы реального времени, обеспечивающие задание границ тарифных зон суток, типа дня недели, сезона. Счетчик питается от измерительной цепи напряжения.

Счётчик может иметь либо однострочный сегментный дисплей, либо 2-х строчный матричный. По спецзаказу может поставляться без дисплея.

На счетчик может быть установлено от 1 до 3 стандартных интерфейсов: PLC-модем, RS-485, RS-232, оптический порт, радиомодем, Ethernet и др.

Возможны исполнения, как со встроенным размыкателем нагрузки, так и с цепью управления внешним УЗО. Отключение нагрузки может быть произведено:

- по внешней команде;
- по превышению заданных пределов параметров сети;
- по превышению заданного предела ограничения энергопотребления;
- при попытке несанкционированного доступа.

По спецзаказу алгоритм срабатывания размыкателя может быть изменен.

На передней панели счетчика расположена кнопка управления режимами индикации дисплея и включения размыкателя нагрузки.

Измеряемые параметры:

- активная энергия нарастающим итогом и мощность;
- реактивная энергия нарастающим итогом и мощность;
- полная мощность;
- напряжение, ток, частота, коэффициент мощности.

Измеряемые параметры сохраняются в памяти, передаются по линиям связи и выводятся на дисплей.

Дисплей счетчика может работать в нескольких режимах - краткий, полный и индикация принятых сообщений. На дисплей могут выводиться:

- потребленная активная и реактивная энергия нарастающим итогом с момента включения и «защелкнутая» на конец месяца;
 - активная, реактивная и полная мощность;
 - текущие действующие значения тока и напряжения, коэффициент мощности;
 - текущие значения частоты;
 - номер действующего тарифа;
 - накопления по «тарифным счетчикам» нарастающим итогом;
 - накопления по «тарифным счетчикам» за последний расчетный период;
 - время и дата;
 - принятые счетчиком сообщения.

По спецзаказу перечень выводимых на дисплей параметров может быть изменен.

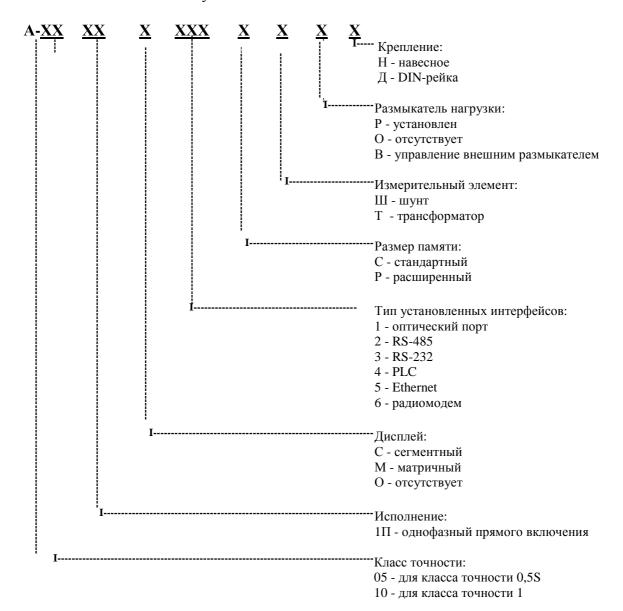
В энергонезависимой памяти счётчиков хранятся следующие параметры:

- активная и реактивная энергия на 30-минутных интервалах

- активная и реактивная энергия на конец суток (глобальный счётчик)
- активная и реактивная энергия на конец суток (тарифные счётичики)
- активная и реактивная энергия на конец месяца
- минимальные и максимальные значения напряжения на 30-минутных интервалах
- минимальные и максимальные значения напряжения за сутки
- энергия, потреблённая по тарифам за расчётный период
- журналы событий.

В журнале событий счетчика фиксируются с указанием времени и даты:

- снятие и возобновление подачи напряжения;
- факт и причина срабатывания размыкателя нагрузки;
- факт включения нагрузки;
- факт изменения тарифного расписания;
- изменение значения заданного предела ограничения энергопотребления;
- установка и коррекция времени счетчика;
- статусная информация о сбоях и ошибках в работе основных узлов счетчика;
- попытки несанкционированного доступа (в том числе и при отсутствии питания).


Конструктивно счетчик выполнен в серийно выпускаемом пластмассовом корпусе, предназначенном либо для навесного крепления к щитам и панелям, либо для крепления на DIN-рейку, и обеспечивающий его быструю замену.

Фотография счётчика с местами опломбирования приведена на рисунке 1.

Рис.1 Места установки пломб на корпусе счетчика: 1 – энергосбытовой организации; 2 – заводской; 3 – поверительной. Счетчик показан: а) в сборе; б) с отсоединенными верхней и нижней крышками.

Счетчик может выпускаться в исполнениях:

Счетчик может применяться как автономно, так и в составе автоматизированных систем контроля и учета электроэнергии бытового потребления (АИИС КУЭ БП).

Программное обеспечение

Метрологически значимое ПО (по ГОСТ Р 8.654-2009) загружается в микропроцессор счетчика на заводе-изготовителе. Возможность доступа к ПО через внешние интерфейсы счетчика отсутствует. Влиянием ПО на метрологические характеристики счетчика можно пренебречь. Идентификационные данные ПО приведены в таблице.

Наименование	Наименование про-	Номер вер-	Цифровой идентифи-	Алгоритм вычис-
программного	граммного модуля	сии про-	катор программного	ления цифрового
обеспечения	(идентификационное	граммного	обеспечения (кон-	идентификатора
	наименование про-	обеспече-	трольная сумма ис-	программного
	граммного обеспечения)	ния	полняемого кода)	обеспечения
A my o o 1	Atlas 1 01 05 him	1.01.05	1aa21aba5c775448969f	MD5
Атлас 1	Atlas_1_01_05.bin	1.01.03	ae06dc328c8d	MIDS
A THE 0. 1	Atlas 1 02 05 hin	1.02.05	ac4e00e2d3e011164c7	MD5
Атлас 1	Atlas_1_02_05.bin	1.02.03	ce1e77319fc63	MIDS

Атлас 1	Atlas_2_01_05.bin	2.01.05	925cbb07ef4f98be5cae dde89490a2e0	MD5
Атлас 1	Atlas_2_02_05.bin	2.02.05	5d10bfedc1e4e8ffbf92 9fc21fefbea0	MD5

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Номинали пое папражение В	230 (220)
Номинальное напряжение, В Базовый ток, A	5 (10)
Максимальный ток, А	50 (80 или 100)
Номинальная частота сети, Гц	50 (80 или 100) 50
Класс точности при измерении энергии	30
- активной (ГОСТ Р 52323-2005, ГОСТ Р 52322-2005)	0,5S;1
- активной (ГОСТ 1 32323-2003, ГОСТ 1 32322-2003) - реактивной (ГОСТ52425-2005)	1; 2
Стартовый ток (порог чувствительности), А	0,02 (0,04)
Основная относительная погрешность измерения активной (реактивной) мощ-	0,02 (0,04)
ности, не более, %:	
- для класса точности 0.5S	$\pm 0.5 (\pm 1.0)$
- для класса точности 1	$\pm 1,0 \ (\pm 2,0)$
Основная относительная погрешность при измерении напряжения в диапазоне	1,0 (±2,0)
(0,85 – 1,1) Uном, не более, %	±1,0
	<u>-1,U</u>
Основная относительная погрешность при измерении тока в диапазоне (0,1 – 10) Іб, не более, %	<u></u>
, , , , , , , , , , , , , , , , , , ,	±1,0
Основная относительная погрешность при измерении частоты в диапазоне (45 –	+0.5
55) Гц, не более, %	±0,5
Дополнительная погрешность, вызываемая изменением влияющих величин при	
жения, тока и частоты не превышает пределов, установленных для активной энерг	
Основная погрешность хода часов реального времени, не более, с/сутки	±0,4
Дополнительная температурная погрешность часов реального времени, не бо-	
лее, с/сут. °С	±0,2
Передаточное значение основного/поверочного выхода, имп/кВт·ч:	4000/16000
Время хранения данных при отсутствии питания, лет	10
Ход часов реального времени при отсутствии питания, не менее, лет	1
Активная и полная мощность, потребляемая в цепи напряжения, не более, Вт и	
B·A	2 и 10
Полная мощность, потребляемая в цепи тока, не более, В-А	1
Работоспособность счетчика сохраняется при напряжении, не ниже, В	150
Размыкатель нагрузки:	
- максимальный ток (без приваривания контактов), А	100
- наработка на отказ при максимальном токе счетчика, не менее,	
операций	10000
Срабатывание по превышению:	
параметров сети:	
- ток, А	программируется
- напряжение, В	программируется
- время задержки на отключение	программируется
ограничения энергопотребления:	
- шаг задания максимальной мощности, кВт	0,1
- время задержки на отключение, мин.	1

Параметры режима многотарифности, максимальное количество:	
- «тарифных счетчиков»	16
- суточных временных тарифных зон	8
- типов дней недели	2
- сезонов	4
Диапазон рабочих температур, °С	от минус 40 до 70
Диапазон температур хранения и транспортировки, °С	от минус 50 до 70
Средняя наработка на отказ, ч	290 000
Средний срок службы, лет	40
Масса, не более, кг	0,7
Габаритные размеры, не более, мм	159 ×123 × 73

Знак утверждения типа

Знак утверждения типа наносят на лицевую панель счетчика любым технологическим способом, обеспечивающим его четкое изображение и сохраняемость в течение срока службы, на титульные листы эксплуатационной документации – типографским способом.

Комплектность средств измерений

комплектность средств измерении	
1. Счетчик электрической энергии статический однофазный «АТЛАС 1»	1 шт.
2. Паспорт 59703777-422860-920ПС	1экз.
3. Руководство по эксплуатации 59703777-422860-920РЭ ¹⁾	1экз.
4. Методика поверки 59703777-422860-920МП ¹⁾	1 экз.
5. Упаковочная коробка или групповая тара	1 шт.
6. Устройство для подключения счетчика к компьютеру ²⁾	1 шт.
7. Программное обеспечение «Конфигуратор» для работы со счетчиком 2)	1 экз.
¹⁾ Руководство по эксплуатации (п.3) и методика поверки (п. 4) высылаются по отдельному до	оговору по
заказу организации, производящей эксплуатацию и поверку счетчика.	
²⁾ Комплектация счетчика по п.6 и п.7 определяется в договоре на поставку.	

Поверка

осуществляется в соответствии с документом «Счетчики электрической энергии статические однофазные «АТЛАС 1». Методика поверки 59703777-422860-920МП, утвержденным ГЦИ СИ Φ ГУП «ВНИИМС» в марте 2012 года.

Перечень основного оборудования, необходимого для поверки:

- 1) установка МТЕ для поверки электросчетчиков с относительной погрешностью при измерении мощности и энергии не более ± 0.05 % в рабочем диапазоне 1 мА 120 А;
- 2) универсальная пробойная установка УПУ-10, испытательное напряжение до 6 кВ, погрешность установки напряжения \pm 5%;
- 3) секундомер ОС, погрешность измерения \pm 0,4 %;
- 4) радиочасы МИР РЧ-01, пределы допускаемой погрешности привязки переднего фронта выходного импульса к шкале координированного времени $UTC \pm 1$ мкс.

Сведения о методиках (методах) измерений

Методика измерений на счетчики электрической энергии статические однофазные «АТ-ЛАС 1» приведена в Руководстве по эксплуатации (59703777-422860-920РЭ).

Нормативные и технические документы, устанавливающие требования к счетчику «АТ-ЛАС 1»

ГОСТ 22261-94. Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ Р 52320-2005 (МЭК 62052-11:2003). Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии.

ГОСТ Р 52322-2005 (МЭК 62053-21:2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2.

ГОСТ Р 52323-2005 (МЭК 62053-22:2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.

ГОСТ Р 52425-2005 (МЭК 62053-23:2003). Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

ГОСТ Р МЭК 61107-2001 «Обмен данными при считывании показаний счетчиков, тарификации и управления нагрузкой. Прямой локальный обмен данными»;

ГОСТ 28906–91 (ИСО 7498–84, Доп.1–84 ИСО 7498–84) Системы обработки информации. Взаимосвязь открытых систем. Базовая эталонная модель;

ТУ 4228-920-59703777-2011. Счетчики электрической энергии статические однофазные «АТ-ЛАС 1». Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Системы телемеханики» (ООО «СИСТЕЛ»).

Адрес: РФ, 107040, г. Москва, ул. Краснопрудная, д.12/1, к. 1

Тел.: (495) 727-39-65, факс: (495) 727-44-36.

Испытательный центр

Государственный центр испытаний средств измерений Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологической службы» (ГЦИ СИ ФГУП «ВНИИМС»).

Юридический адрес: 119361, г. Москва, ул. Озерная, д. 46.

Тел. 8 (495) 437 55 77; Факс 8 (495) 437 56 66; E-mail: office@vniims.ru.

Номер аттестата аккредитации 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян «____» ____ 2012 г. МП