

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

US.C.28.004.A № 46998

Срок действия до 25 июня 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Акселерометры пьезоэлектрические моделей 301A12, 301M26 и 353B17

ИЗГОТОВИТЕЛЬ
Фирма "PCB Piezotronics", США

РЕГИСТРАЦИОННЫЙ № 50255-12

ДОКУМЕНТ НА ПОВЕРКУ ГОСТ Р ИСО 16063-11-2009

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 3 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 25 июня 2012 г. № 438

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руковод	цителя
Федерального агенто	ства

Е.Р.Петросян

"...... 2012 г.

Серия СИ

№ 005279

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Акселерометры пьезоэлектрические моделей 301А12, 301М26 и 353В17

Назначение средства измерений

Акселерометры пьезоэлектрические моделей 301A12, 301M26 и 353B17 (далее акселерометры) предназначены для измерения параметров вибрации (виброускорения).

Описание средства измерений

Акселерометры являются преобразователями инерционного типа. Принцип действия акселерометров основан на использовании прямого пьезоэлектрического эффекта, состоящего в появлении электрического заряда на пьезоэлектрической пластине, пропорционального ускорению, воздействующему на преобразователь. Акселерометры имеют встроенный усилитель заряда.

Акселерометры могут быть использованы в качестве эталонных преобразователей при проведении калибровки, испытаний на вибрацию и для научных исследований, а также в качестве первичных пеобразователей во всех отраслях промышленности (энергетическая, нефтяная, газовая, авиационная и др.) и транспорта, где требуется измерять параметры вибрации.

Акселерометр модели 301A12 предназначен для измерения вибрационных и ударных ускорений и имеет резонансную частоту выше 30 кГц.

Акселерометр модели 301М26 имеет резонансную частоту, превышающую 14 кГц.

Акселерометр модели 353B17 – это высокочастотный акселерометр с резонансной частотой, превышающей $70~\mathrm{k\Gamma}$ ц.

Внешний вид акселерометров моделей 301A12, 301M26 и 353B17 приведен на рисунке 1.

Рисунок 1 - Акселерометры моделей 301А12, 301М26 и 353В17

Метрологические и технические характеристики

	Модели		
Наименование характеристики	301A12	301M26	353B17
		Значения	
1	2	3	4
Номинальный коэффициент преобразования на			
опорной частоте 100 Γ ц, м $B/(M \cdot c^{-2})$	0,051	51	1,02
Диапазоны измерений виброускорения (пик), м/c ²	± 98,1	± 9,81	± 4905
Диапазон рабочих частот, Гц	От 1 до 10000	От 0,015 до	От 0,35 до
	включ.	7000 включ.	30000 включ.
Отклонение коэффициента преобразования от			
номинального значения, %, не более	± 20	± 10	± 10

1	2	3	4
Диапазон частот при неравномерности ампли-			
тудно-частотной характеристики (относительно			
опорной частоты	От 1 до 10000	От 0,035 до	От 1 до
100 Γ ц) не более \pm 5 %, Γ ц	включ.	2000 включ.	10000 включ.
Диапазон частот при неравномерности ампли-			
тудно-частотной характеристики (относительно		От 0,025 до	От 0,7 до
опорной частоты 100 Γ ц) не более \pm 10 %, Γ ц		3500 включ.	17000 включ.
Диапазон частот при неравномерности ампли-			
тудно-частотной характеристики (относительно		От 0,015 до	От 0,35 до
опорной частоты 100 Γ ц) не более \pm 3 дБ, Γ ц		7000 включ.	30000 включ.
Нелинейность амплитудной характеристики, %,			
не более	0,1	1	1
Относительный коэффициент поперечного пре-			
образования (на частоте 100 Гц), %, не более	3	3	5
Условия эксплуатации:	От -54 до 121	От -54 до	От -54 до
диапазон температур, °С	включ.	121 включ.	121 включ.
Габаритные размеры (высота ×шестигранник),			
мм, не более	36,3 × 16	$38,1 \times 30,2$	$15 \times 0,7$
Масса, г	42	184	1,7

Знак утверждения типа

Знак утверждения типа наносится на титульный лист паспорта методом печати или наклейки.

Комплектность средства измерений

Наименование	Кол-во	Примечание
Акселерометры пьезоэлектрические моделей	1 шт.	В соответствии с заказом
301А12, 301М26 и 353В17		
Паспорт с сертификатом калибровки	1 экз.	

Поверка

осуществляется в соответствии с ГОСТ Р ИСО 16063-11-2009 «Вибрация. Методы калибровки датчиков вибрации и удара. Часть 11. Первичная вибрационная калибровка методами лазерной интерферометрии».

Сведения о методиках (методах) измерений

Сведения о методиках измерений отсутствуют.

Нормативные и технические документы, устанавливающие требования к акселерометрам пьезоэлектрическим моделей 301A12, 301M26 и 353B17

- 1. МИ 2070-90 Государственная поверочная схема для средств измерений виброперемещения, виброскорости и виброускорения в диапазоне частот $3 \cdot 10^{-1} \div 2 \cdot 10^{4}$ Гц.
 - 2. Техническая документация фирмы «PCB Piezotronics», США.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Фирма «РСВ Piezotronics», США.

Адрес: 3425 Walden Avenue, Depew, New York 14043-2495 USA.

Заявитель

Общество с ограниченной ответственностью «Новатест» (ООО «Новатест») Адрес: 1414001, г. Химки, Московская обл., Ленинский проспект, 1, корп. 2

Испытательный центр

Государственный центр испытаний средств измерений (ГЦИ СИ) ФГУП «ВНИИМС» Аттестат аккредитации, зарегистрированный в Госреестре средств измерений под № 30004-08 от 27.06.2008г.

Адрес: 119361, г.Москва, ул.Озерная, д.46

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.п. «___» ____2012 г.