

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

JP.C.32.004.A № 47009

Срок действия до 25 июня 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Преобразователи измерительные беспроводные YTA510

ИЗГОТОВИТЕЛЬ
Фирма Yokogawa Electric Corporation, Япония

РЕГИСТРАЦИОННЫЙ № 50266-12

ДОКУМЕНТ НА ПОВЕРКУ МП 50266-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 25 июня 2012 г. № 438

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Е.Р.Петросян
Федерального агентства		
	""	2012 г.

№ 005289

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Преобразователи измерительные беспроводные YTA510

Назначение средства измерений

Преобразователи измерительные беспроводные YTA510 (далее по тексту – преобразователи) предназначены для измерения (с индикацией на встраиваемом (опционально) ж/к дисплее) и преобразования сигналов, поступающих от термопреобразователей сопротивления, термоэлектрических преобразователей, омических устройств и милливольтовых устройств постоянного тока в цифровой сигнал для передачи в соответствии со стандартом беспроводной передачи данных ISA100.

Описание средства измерений

Принцип работы преобразователей основан на преобразовании сигналов, поступающих от термопреобразователей сопротивления, термоэлектрических преобразователей, омических устройств, милливольтовых устройств постоянного тока в сигнал для беспроводного протокола обмена данными.

Преобразователи состоят из корпуса, изготовленного из алюминиевого сплава с небольшой примесью меди с полиуретановым покрытием, с отвинчивающимися крышками (одна из крышек снабжена окном для обзора показаний ж/к дисплея (опционально)). Внутри корпуса расположены модуль автономного питания, платы СРU, базовая и плата соединений, а также передающий модуль RF, отделение ввода с клеммной колодкой и ж/к дисплей (опционально).

Преобразователь работает от внутреннего блока двух сменных батарей. Беспроводная связь с 128- битным шифрованием обеспечивает безопасное использование и многочисленные функции, включая мониторинг состояния устройств, расширенные возможности диагностики и регулировку параметров устройства. Связь устанавливается в соответствии со стандартом ISA 100.

Фото общего вида преобразователя приведено на рисунке 1

Рис.1: Преобразователь измерительный беспроводной YTA510 (с ЖКИ)

Программное обеспечение

Метрологически значимым программным обеспечением (ПО) преобразователей является только встроенное ПО.

Для преобразования сигналов, поступающих от термопреобразователей сопротивления, термоэлектрических преобразователей, омических устройств, милливольтовых устройств постоянного тока в сигнал для беспроводного протокола обмена данными используются алгоритмы, реализованные в базовом программном обеспечении (БПО) и записанные в постоянной памяти измерительного преобразователя. Базовое программное обеспечение устанавливается в энергонезависимую память преобразователей на заводе-изготовителе во время производственного цикла. БПО недоступно пользователю и не подлежит изменению на протяжении всего времени функционирования изделия, что соответствует уровню защиты «А». Метрологические характеристики преобразователей оценены с учетом влияния на них БПО.

Внешнее (автономное) программное обеспечение (ВПО) FieldMate, предназначенное для конфигурирования и обслуживания преобразователей, устанавливается на персональный компьютер и не влияет на метрологические характеристики измерительных преобразователей. ВПО не имеет доступа к энергонезависимой памяти преобразователей и не позволяет заменять или корректировать БПО. Уровень защиты ВПО соответствует уровню «С».

Идентификационные данные встроенного ПО приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Наименова-ние про-	Идентифи-	Номер версии	Цифровой иден-	Алгоритм вы-
граммного обеспече-	кационное	(идентифика-	тификатор про-	числения цифро-
ния	наименова-	ционный но-	граммного обеспе-	вого идентифи-
	ние про-	мер) программ-	чения (контроль-	катора про-
	граммного	ного обеспече-	ная сумма испол-	граммного обес-
	обеспечения	кин	няемого кода)	печения
ПО для преобразова-		Не ниже		
телей измерительных	Software	R1.02.01	Не используется	_
беспроводных YTA510		K1.02.01		

Метрологические и технические характеристики

Тип первичного преобразователя, диапазон измерений, пределы допускаемой основной погрешности, минимальный интервал измерений преобразователей приведены в таблице 2.

Таблица 2

Тип первичного преобразователя		Диапазон измерений	Пределы допускаемой основной погрешности
	В	от плюс 100 °C до плюс 300 °C	± 5,0 °C
		от плюс 300 °C до 400 °C	± 2,0 °C
		от плюс 400 °C плюс 1820 °C	± 1,5 °C
	E	от минус 200 °C до плюс 1000 °C	± 0,4 °C
Преобразова-	J	от минус 200 °C до плюс 1200 °C	± 0,5 °C
тель термо-	K	от минус 200 °C до плюс 1372 °C	
электриче- ский	N	от минус 200 °C до плюс 1300 °C	± 0,6 °C
	R	от минус 50 °C до плюс 100 °C	± 1,7 °C
		от плюс 100 °C до плюс 1768 °C	± 0,8 °C
	S	от минус 50 °C до плюс 100 °C	± 1,7 °C
		от плюс 100 °C до плюс 1768 °C	± 0,8 °C
	T	от минус 200 °C до плюс 400 °C	± 0,5 °C
Термопреоб-	Pt100	от минус 200 °C до плюс 850 °C	± 0,3 °C
разователь	Pt200	от минус 200 °C до плюс 850 °C	± 0,6 °C
сопротивле- ния	Pt500	от минус 200 °C до плюс 850 °C	± 0,5 °C
мВ		от минус 10 мВ до плюс 100 мВ	± 0,03 MB
Ом	-	от 0 Ом до 2000 Ом	± 1 Ом

Примечание к таблице 2:

Типы HCX термопреобразователей сопротивления и термоэлектрических преобразователей по MЭК 60751 (2008, 07)/ Γ OCT 6651-2009 и MЭК 60584-1/ Γ OCT P 8.585-2001 соответственно.

Пределы допускаемой абсолютной погрешности внутренней схемы компенсации холодного спая термопары, °C: ± 0.5

Пределы допускаемой дополнительной абсолютной погрешности преобразователя от изменения температуры окружающей среды приведены в таблице 3.

Таблица 3.

			таолица 5.
Тип первичного			Пределы допускаемой дополнитель-
		Диапазон	ной абсолютной погрешности преоб-
преобразовато	еля	измерений	разователя от изменения температу-
			ры окружающей среды на 1 °C
		$100 ^{\circ}\text{C} \le t < 300 ^{\circ}\text{C}$	$\pm (0.2 ^{\circ}\text{C} - (0.066 \% \text{ot} (t - 100)))$
	В	$300 ^{\circ}\text{C} \le t < 1000 ^{\circ}\text{C}$	$\pm (0.07 ^{\circ}\text{C} - (0.0057 \% \text{ot} (t - 300)))$
		t ≥ 1000 °C	± 0,037 °C
	E	t < 0 °C	$\pm (0.0035 ^{\circ}\text{C} - (0.00492 \% \text{ot} t))$
		t ≥ 0 °C	$\pm (0.0035 ^{\circ}\text{C} + (0.00146 \% \text{ot t}))$
	J	t < 0 °C	$\pm (0.0039 ^{\circ}\text{C} - (0.00529 \% \text{ot t}))$
	J	t ≥ 0 °C	$\pm (0,0039 ^{\circ}\text{C} + (0,00149 \% \text{ot} t))$
Преобразователь термоэлектриче- ский	K	t < 0 °C	$\pm (0.00521 ^{\circ}\text{C} - (0.00707 \% \text{ot} t))$
	N.	t ≥ 0 °C	$\pm (0.00521 ^{\circ}\text{C} + (0.00182 \% \text{ot} t))$
	N	t < 0 °C	$\pm (0.0077 ^{\circ}\text{C} - (0.00918 \% \text{ot t}))$
	11	t ≥ 0 °C	$\pm (0.0077 ^{\circ}\text{C} + (0.00136 \% \text{ot t}))$
		t < 0 °C	± (0,04 °C − (0,057 % or t))
	R, S	0 °C ≤ t < 100 °C	$\pm (0.04 ^{\circ}\text{C} + (0.0102 \% \text{ot t}))$
	K, S	100 °C ≤ t < 600 °C	$\pm (0.0316 ^{\circ}\text{C} - (0.001 \% \text{ot t}))$
		t ≥ 600 °C	± (0,0175 °C + (0,00173 % or t))
	Т	t < 0 °C	$\pm (0.00513 ^{\circ}\text{C} - (0.00631 \% \text{ot} t))$
		t ≥ 0 °C	$\pm (0.00513 \text{ °C} + (0.0008 \text{ % ot t}))$
	Pt100	полный диапазон входа	± (0,0048 °С + (0,0016 % от
			абсолютного значения t))
Термопреобра- зователь сопро- тивления	Pt200	t < 650 °C	± (0,0038 °C + (0,0015 % от
		t < 030 °C	абсолютного значения t))
		t ≥ 650 °C	$\pm (0.0028 ^{\circ}\text{C} + (0.0016 \% \text{ot t}))$
	Pt500	t < 650 °C	± (0,003 °C + (0,0014 % от
			абсолютного значения t))
		t ≥ 650 °C	$\pm (0,002 ^{\circ}\text{C} + (0,0016 \% \text{ot t}))$
мВ		полный диапазон входа	$\pm (0.2 \text{ мкB} + (0.0015 \% \text{ от}$
			показания))
Ом		полный диапазон входа	$\pm (0,001 \text{ Ом} + (0,0011 \% \text{ от показа-}$
		полный дианазон входа	ния))
Примечание к таб	лице 3:		

t - значение измеряемой температуры в °C.

Преобразователи могут использоваться при температуре окружающей среды от минус 40 до плюс 85 °C (без индикатора) и от минус 30 до плюс 80 °C (для преобразователей со встроенным индикатором) и относительной влажности воздуха до 100 %.

Номинальное напряжение питания преобразователя

Габаритные размеры (без антенны), мм:	191×140×248
Масса (без блока батарей и монтажного кронштейна), кг, не бол	ree:3,5
Средний срок службы, лет, не менее	20

Преобразователи во взрывозащищенном исполнении имеют маркировку вида: 0ExiaIICT4X («искробезопасная электрическая цепь»).

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации типографским способом или методом штемпелевания и/или также на корпус преобразователя при помощи наклейки.

Комплектность

В комплект поставки входят:

- преобразователь измерительный (исполнение по заказу) 1 шт.;
- руководство по эксплуатации (на русском языке) 1 экз;
- методика поверки 1 экз.

По дополнительному заказу поставляются: монтажные приспособления, беспроводной интегрированный шлюз типа YFGW с программным обеспечением, адаптер инфракрасной связи InfraRed USB Adaptor, программное обеспечение FieldMate (DeviceFile).

Поверка

осуществляется в соответствии с документом МП 50266-12 «Преобразователи измерительные беспроводные YTA510. Методика поверки», разработанным и утверждённым ГЦИ СИ ФГУП «ВНИИМС», 05.10.2011 г.

Основные средства поверки:

- компаратор напряжений Р3003, кл.0,0005;
- мера электрического сопротивления многозначная Р3026-1, кл.0,002;
- цифровой прецизионный термометр сопротивления DTI-1000, пределы допускаемой абсолютной погрешности измерений температуры в диапазоне от минус 50 до плюс 300 °C: ± 0.03 °C:
- программно-аппаратный комплекс, позволяющий визуализировать измеренную преобразователем температуру и перенастроить измерительный преобразователь на иной диапазон и тип первичного преобразователя.

Сведения о методиках (методах) измерений приведены в руководстве по эксплуатации на преобразователи.

Нормативные и технические документы, устанавливающие требования к преобразователям измерительным беспроводным YTA510

ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

ГОСТ 6651-2009 ГСИ. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний.

ГОСТ 6616-94. Преобразователи термоэлектрические. Общие технические условия.

Международный стандарт МЭК 60584-1. Термопары. Часть 1. Градуировочные таблицы.

ГОСТ Р 8.585-2001 ГСИ. Термопары. Номинальные статические характеристики преобразования.

Международный стандарт МЭК 60751 (2008, 07). Промышленные чувствительные элементы термометров сопротивления из платины.

Техническая документация фирмы-изготовителя.

ГОСТ 8.558-93. ГСИ. Государственная поверочная схема для средств измерения температуры.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта; выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Преобразователи могут применяться в системах сбора и обработки информации, управления распределенными объектами регулирования и управления технологическими процессами в различных отраслях промышленности. Модификации преобразователей во взрывозащищенном исполнении могут применяться в соответствии с присвоенной маркировкой взрывозащиты во взрывоопасных зонах помещений и наружных установок согласно требованиям нормативных документов, регламентирующих применение электрооборудования во взрывоопасных зонах.

Изготовитель

фирма Yokogawa Electric Corporation, Япония

Адрес: 2-9-32, Nakacho, Musashino-shi, Tokyo, 180-8750 Japan,

Kofu Factory, 155 Takamuro-cho, Kofu-shi, Yamanashi-ken, 400-8558 Japan

Заявитель

ООО «Иокогава Электрик СНГ»

Адрес: Россия, г. Москва, Грохольский пер., д.13, строение 2, 129090.

Тел.: (495) 737-78-68/71, Факс: (495) 737-78-69.

e-mail: info@ru.yokogawa.com

Испытательный центр

Государственный центр испытаний средств измерений (ГЦИ СИ) ФГУП «ВНИИМС», г. Москва

Аттестат аккредитации от 27.06.2008, регистрационный номер

в Государственном реестре средств измерений № 30004-08. Адрес: 119361, г.Москва, ул.Озерная, д.46

Тел./факс: (495) 437-55-77 / 437-56-66.

E-mail: office@vniims.ru, адрес в Интернет: www.vniims.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.п. «____» ____ 2012 г.