

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.29.001.A № 47163

Срок действия до 09 июля 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Рабочие эталоны 1-го разряда - источники микропотоков газов и паров ИМ-ВРЗ

ИЗГОТОВИТЕЛЬ
ООО "Мониторинг", г.Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 50363-12

ДОКУМЕНТ НА ПОВЕРКУ МП-242-1273-2012

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ Подлежат первичной поверке при вводе в эксплуатацию

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 09 июля 2012 г. № 483

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	acoust the second of the last	Е.Р.Петросян
Федерального агентства		
	и	2012 г.

№ 005477

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Рабочие эталоны 1-го разряда - источники микропотоков газов и паров ИМ-ВРЗ

Назначение средства измерений

Рабочие эталоны 1-го разряда - источники микропотоков газов и паров ИМ-ВРЗ (далее – ИМ) в комплекте с термодиффузионными генераторами газовых смесей предназначены для передачи единицы массовой концентрации компонента в газовых средах рабочим эталонам 2-го разряда и рабочим средствам измерений в соответствии с ГОСТ 8.578-2008.

Описание средства измерений

Принцип действия – термодиффузионный.

ИМ представляют собой сосуды с проницаемыми стенками, заполненные чистым веществом (жидкостью, твердым веществом или сжиженным газом). Производительность ИМ (количество вещества, диффундируемого из источника микропотоков в единицу времени) зависит от природы вещества, которым заполнен ИМ, а также от геометрических размеров, температуры и материала стенок сосуда. При обдувании газом-разбавителем вещество диффундирует в поток газа с постоянной скоростью.

ИМ различаются веществом, температурой применения и конструктивным исполнением.

В зависимости от количества номинальных значений температуры и соответствующих значений производительности ИМ относятся к однозначным или многозначным ИМ.

Конструктивно ИМ могут быть выполнены в виде фторопластовой трубки или ампулы. Внешний вид источника представлен на рис. 1.

Предельным состоянием считают наличие вещества в ИМ менее 10 % от полной вместимости (визуально) или от массы (брутто).

ИМ относятся к невосстанавливаемым, неремонтируемым, однофункциональным изделиям.

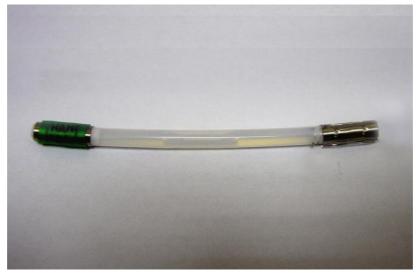


Рисунок 1 – Внешний вид источников микропотока ИМ-ВРЗ.

Метрологические и технические характеристики

ИМ имеют следующие основные технические характеристики:

- 1 Диапазоны производительности приведены в таблице 1.
- 2 Пределы допускаемой относительной погрешности (δ_0) ИМ (пределы допускаемой относительной погрешности значений производительности, воспроизводимых источником микропотока):
 - \pm 7 %, при производительности < 1,0 мкг/мин;
 - ± 5 %, при производительности ≥ 1.0 мкг/мин.

- 3 Допускаемое относительное отклонение производительности от заданного при заказе значения: не более \pm 15 %;
 - 4 Номинальные значения температур (T_н) приведены в таблице 1;
- 5 Коэффициент функции влияния температуры на производительность ИМ при $(T_H \pm 0.5)$ °C (температурный коэффициент) приведен в таблице 1;
- 6 Пределы допускаемой относительной погрешности температурного коэффициента \pm 10 %:
 - 7 Габаритные размеры и конструктивные исполнения ИМ приведены в таблице 2.
 - 8 Масса, не более: 20 г.
 - 9 ИМ заполнены веществом не менее, чем на 70 % от полной вместимости.
 - 10 ИМ заполнены веществом с содержанием основного компонента не менее 99,0 %.

Примечание: Допускается заполнение ИМ веществом с содержанием основного компонента не менее 97 % при условии определения содержания основного компонента по МИ, разработанной и аттестованной в соответствии с ГОСТ Р 8.563 – 2009 и отсутствия в веществе летучих компонентов.

11 Гарантийный срок годности ИМ (интервал времени, в течение которого гарантируется неизменность метрологических характеристик ИМ с даты выпуска при соблюдении условий транспортировки, хранения и эксплуатации): 1 год.

Таблица 1. Метрологические х	характеристики	ИW.
------------------------------	----------------	-----

Условное оованачение ИМ-ВРЗ Вещество значение пературы, Т _н , С° тивное исполненературы, Т _н , исполненерат			Номинальное	Конструк-	Диапазон	Температур-	
МА-ВРЗ Манение МА-ВРЗ Малеиновый ангидрид С4H2O3 Малеиновый ангидрид С4H2O3		70		1.5	, ,	1 - 1	
ИМ-ВР3-1-М-A2 Оксид пропилена С ₃ H ₆ O 40,0 60,0 A2 A2 0,1 - 2 2 - 10 0,025 ИМ-ВР3-1-М-A2 Оксид пропилена С ₃ H ₆ O 40,0 B 0,025 A2 0,1 - 2 2 - 10 0,025 ИМ-ВР3-2-М-Б Оксид пропилена С ₃ H ₆ O 60,0 B 2 - 10 0,025 0,025 ИМ-ВР3-3-М-А2 Тетраэтилорто-силикат (ТЕОS) 100,0 A2 1 - 5 0,025 0,02 - 1 0,025 ИМ-ВР3-4-М-Б Силикат (ТЕОS) С ₈ H ₂₀ O ₄ Si 120,0 B 100,0 B 1 - 5 0,025 100,0 B 1 - 5 0,025 0,025 ИМ-ВР3-5-М-А1 Им-ВР3-6-М-А2 Малеиновый ангидрид С ₄ H ₂ O ₃ 90,0 A1 0,5 - 2,5 0,025 0,025 ИМ-ВР3-6-М-А2 Малеиновый ангидрид С ₄ H ₂ O ₃ 120,0 A2 3 - 8 100,0 A2 1 - 3 0,025 0,025 ИМ-ВР3-7-М-А2 Н-Пропилацетат С ₃ H ₁₀ O ₂ 120,0 A2 8 - 15 90,0 A2 5 - 10 0,025 0,025 ИМ-ВР3-8-М-Б Им-Вра-9-О-А1 Н-Пропилацетат С ₃ H ₁₀ O ₂ 120,0 B 8 - 15 0,025 0,025 ИМ-ВР3-10-М-А2 Эпихлоргидрин С ₃ H ₅ ClO 100,0 A2 1 - 5 0,025 0,025 ИМ-ВР3-10-М-А2 Эпихлоргидрин С ₃ H ₅ ClO 100,0 A2 1 - 5 0,025 0,025		Вещество	пературы, Т.,	исполне-	*	* *	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	им-врз			ние		(α), градус ⁻¹	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	III (DDD 1 M AQ	Оксид пропилена	40,0	A2			
ИМ-ВР3-2-М-БОксид пропилена C_3H_6O 40,0 $60,0$ Б $2-10$ 0,025ИМ-ВР3-3-М-А2Тетраэтилорто- силикат (TEOS) $C_8H_{20}O_4Si$ 100,0 $A2$ 1-5 $0,025$ ИМ-ВР3-4-М-БТетраэтилорто- силикат (TEOS) $C_8H_{20}O_4Si$ 120,0 $A2$ 5-15 $0,025$ ИМ-ВР3-4-М-БТетраэтилорто- силикат (TEOS) $C_8H_{20}O_4Si$ 120,0 E_0 5 E_0 0,021 E_0 ИМ-ВР3-5-М-А1Малеиновый ангидрид $C_4H_2O_3$ 120,0 E_0 5 E_0 0,025 E_0 ИМ-ВР3-6-М-А2Малеиновый ангидрид E_0 100,0 E_0 A2 E_0 0,025 E_0 ИМ-ВР3-7-М-А2Н-Пропилацетат E_0 80,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-8-М-БН-Пропилацетат E_0 80,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-9-О-A1Эпихлоргидрин E_0 100,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-10-М- E_0 Эпихлоргидрин E_0 100,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-10-М- E_0 Эпихлоргидрин E_0 100,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-10-М- E_0 Эпихлоргидрин E_0 80,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-10-М- E_0 Эпихлоргидрин E_0 80,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-10-М- E_0 Эпихлоргидрин E_0 80,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-10-М- E_0 Эпихлоргидрин E_0 80,0 E_0 A2 E_0 1-5 E_0 ИМ-ВР3-10-М- E_0 Эпихлоргидрин E_0 80,0 E_0 A2 E_0 1-5 E_0	ИМ-ВРЗ-1-М-А2	<u> </u>	60,0	A2	2 - 10	0,025	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IIM DD2 A M F	Оксид пропилена	40,0	Б		0.025	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ИМ-ВРЗ-2-М-Б		60,0	Б	2 - 10	0,025	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Тетраэтилорто-	80,0	A2	0,2-1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ИМ-ВРЗ-3-М-А2	силикат (TEOS)	100,0	A2	1 - 5	0,025	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C_8H_{20}O_4Si$	120,0	A2	5 – 15		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Тетраэтилорто-	80,0	Б	0,2-1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ИМ-ВРЗ-4-М-Б	силикат (TEOS)	100,0	Б	1 - 5	0,025	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C_8H_{20}O_4Si$	120,0	Б	5 – 15		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Малеиновый ан-	90.0	Α 1	0.1 0.5		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ИМ-ВРЗ-5-М-А1	гидрид	· · · · · · · · · · · · · · · · · · ·		, ,	0,025	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C_4H_2O_3$	90,0	AI	0,3-2,3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Малеиновый ан-	80,0	A2	0,2-1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ИМ-ВРЗ-6-М-А2	гидрид	100,0	A2	1 - 3	0,025	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$C_4H_2O_3$	120,0	A2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		и-Пропиланетат					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ИМ-ВРЗ-7-М-А2	<u> </u>	· · · · · · · · · · · · · · · · · · ·			0,025	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		C51110O2	·				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ИМ-ВРЗ-8-М-Б	и-Пропиланетат	ĺ .				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	ĺ .			0,025	
C_3H_5ClO C_3		C51110O2	120,0	Б	8 - 15		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ИМ-ВРЗ-9-О-А1		100,0	A1	0,1-1	0,025	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$		3 3	60,0	A2	1 – 5		
A2 C_3H_5CIO 100,0 A2 $10-20$ 0,025	ИМ-ВРЗ-10-М-	Эпихлоргидрин	,		5 – 10	0.025	
			,			0,025	
120,0 A2 20 – 30			· · · · · · · · · · · · · · · · · · ·	A2			

ИМ-ВРЗ-11-М-Б	Эпихлоргидрин С ₃ H ₅ ClO	60,0 80,0 100,0 120,0	Б Б Б	$ \begin{array}{r} 1 - 5 \\ 5 - 10 \\ 10 - 20 \\ 20 - 30 \end{array} $	0,025
ИМ-ВРЗ-12-М- A2	N,N- диметилацетамид C_4H_9 NO	100,0 120,0	A2 A2	1 - 3 $2 - 7$	0,025
ИМ-ВРЗ-13-М-Б	N,N- диметилацетамид С ₄ H ₉ NO	100,0 120,0	Б Б	1 - 3 $2 - 7$	0,025
ИМ-ВРЗ-14-М- A2	Хлористый бен- зил С ₇ Н ₇ С1	80,0 90,0 100,0 120,0	A2 A2 A2 A2	0,1-1 $1-3$ $3-7$ $7-20$	0,025
ИМ-ВРЗ-15-М-Б	Хлористый бен- зил С ₇ H ₇ Cl	80,0 90,0 100,0 120,0	Б Б Б	0,1-1 $1-3$ $3-7$ $7-20$	0,025
ИМ-ВРЗ-16-М- A2	1, 1, 1 трихлорэ- тан C ₂ H ₃ Cl ₃	90,0 100,0	Б Б	0.3 - 1 $1 - 7$	0,025
ИМ-ВРЗ-17-М-Б	1, 1, 1 трихлорэ- тан С ₂ H ₃ Cl ₃	90,0 100,0	Б Б	0.3 - 1 $1 - 7$	0,025

Примечание:

Конкретные значения производительности (G, мкг/мин) приведены в паспорте на ИМ.

Таблица 2. Конструктивные исполнения ИМ.

Условное обозначение исполнения	Особенность конструкции	Схема ИМ	Длина проницаемого сосуда, мм	Наружный диаметр проницаемого сосуда, мм
A1	Трубка		15135	4
A2	Труоки		10130	68
Б	Ампула			

Примечания:

- 1. Проницаемые сосуды (модификации A) изготавливаются из фторопластовой трубки по ТУ 301 89 90 «Трубки из фторопласта 4МБ калиброванные» или трубки из фторопласта 4 по ГОСТ 100007-80.
- 2. Ампулы из фторопласта Φ 4МБ (модификация Б) изготавливаются по ТУ 95 766 80 (Кирово Чепецкий химзавод).

Знак утверждения типа

Знак утверждения типа наносится на паспорт и контейнер (упаковку), в котором хранится ИМ.

Комплектность средства измерений

В комплект поставки ИМ входят:

- 1 Источник микропотоков (исполнение и производительность ИМ определяется при заказе) $1\,\mathrm{mr}$.
 - 2 Контейнер 1 шт.
 - 3 Паспорт −1 экз.
 - 4 Свидетельство о поверке 1 экз.

Поверка

осуществляется при выпуске из производства в соответствии с документом «Источники микропотоков газов и паров ИМ-ВРЗ. Методика поверки» МП-242-1273-2012, утвержденным ГЦИ СИ ФГУП "ВНИИМ им. Д.И. Менделеева" 2 апреля 2012 г.

Основные средства поверки:

- источники микропотоков газов и паров ИМ эталоны сравнения по ГОСТ 8.578-2008, относительная погрешность не более $\pm (2-3)$ %.
- рабочий эталон 1-го разряда генератор газовых смесей ГГС модификаций ГГС-Т или ГГС-К по ШДЕК.418319.009 ТУ (№ 45189-10 в Госреестре СИ РФ);
- газоанализатор-компаратор * , относительное среднее квадратическое отклонение результата измерений (S_0) не более 1,5 %.

Примечание. *В качестве газоанализатора-компаратора может применяться газоанализатор ЭРИС-TVOC по ТУ 4215-025-56795556-2009.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе «Источники микропотоков газов и паров ИМ-ВРЗ. Паспорт» ШДЕК 418319.008 ПС, 2011 г. и в руководствах по эксплуатации на термодиффузионные генераторы.

Нормативные и технические документы, устанавливающие требования к источникам микропотоков газов и паров ИМ-ВРЗ

- 1 ГОСТ 8.578-2008. ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
- 2 Источники микропотоков газов и паров ИМ-ВРЗ. Технические условия ШДЕК 418319.008 ТУ

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение работ и оказание услуг по обеспечению единства измерений.

Изготовитель

ООО «Мониторинг», 190013, г. Санкт-Петербург, а/я 113.

Факс: (812) 327-97-76. Тел: (812) 251-56-72. Сайт: www.ooo-monitoring.ru

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», 190005,Санкт-Петербург, Московский пр., д. 19, тел. (812) 251-76-01, факс: (812) 713-01-14, электронная почта: info@vniim.ru, аттестат аккредитации № 30001-10.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

Е.Р. Петросян

M.H	. «	·>	»	_201	2 :	Γ.
-----	-----	----	---	------	-----	----