

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.010.A № 47266

Срок действия бессрочный

НЛИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) "ВКЗ"

ЗАВОДСКОЙ НОМЕР 009

ИЗГОТОВИТЕЛЬ ООО "ПромЭнергоСервис", г.Ижевск

РЕГИСТРАЦИОННЫЙ № 50473-12

ДОКУМЕНТ НА ПОВЕРКУ МП 1276/446-2012

интервал между поверками 4 года

Тип средств измерений утвержден приказом Федсрального агентства по техническому регулированию и метрологии от **09 июля 2012 г.** № **486**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства		Е.Р.Петросян
	и и	2012 г.

No 005614

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) «ВКЗ»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) «ВКЗ» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, для осуществления эффективного автоматизированного коммерческого учета и контроля потребления электроэнергии и мощности потребляемой с ОРЭМ по расчетным точкам учета, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Полученные данные и результаты измерений могут использоваться для коммерческих расчетов и оперативного управления энергопотреблением.

Описание средства измерений

АИИС КУЭ построена на основе ИВК «Альфа Центр» (Госреестр № 44595-10) и представляет собой автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные комплексы (ИИК) АИИС КУЭ состоят из двух уровней:

1-ый уровень – измерительные каналы (ИК), который включает в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи.

2-ой уровень – информационно-вычислительный комплекс (ИВК), который включает в себя сервер базы данных (СБД), устройство синхронизации системного времени (УССВ), автоматизированное рабочее место оператора (АРМ), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АРМ оператора представляет собой персональный компьютер, на котором установлена клиентская часть ПО «АльфаЦЕНТР». АРМ по локальной вычислительной сети (ЛВС) предприятия связано с сервером для этого в настройках ПО «АльфаЦЕНТР» указывается IP-адрес сервера.

В качестве СБД используется компьютер на базе серверной платформы HP Proliant DL380 с программным обеспечением ИВК «Альфа Центр».

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в 30 мин) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений в организации-участники оптового рынка электроэнергии;

- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени);
- передача журналов событий счетчиков.

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Для получения информации со счетчиков СБД формирует запрос. Счетчик в ответ, по информационным линиям связи интерфейса RS 485 и GSM-модем, пересылает данные на ССД. ССД при помощи программного обеспечения (ПО «Альфа-Центр») осуществляет сбор, обработку измерительной информации (умножение на коэффициенты трансформации), формирование, хранение, оформление справочных и отчетных документов и последующую передачу информации в ОАО «АТС», и прочим заинтересованным организациям в рамках согласованного регламента.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Коррекция текущего значения времени и даты (далее времени) часов УССВ происходит от встроенного GPS-приёмника. Погрешность формирования (хранения) шкалы времени при отсутствии коррекции по сигналам проверки времени в сутки не более $\pm 1,0$ с. Установка текущих значений времени и даты в АИИС КУЭ происходит автоматически на всех уровнях системы внутренними таймерами устройств, входящих в систему. Коррекция отклонений встроенных часов осуществляется при помощи синхронизации таймеров устройств с единым временем, поддерживаемым УССВ.

Синхронизация времени или коррекция шкалы времени таймеров сервера происходит каждый час, коррекция текущих значений времени и даты серверов с текущими значениями времени и даты УССВ осуществляется независимо от расхождении с текущими значениями времени и даты УССВ, т.е. серверы входит в режим подчинения устройствам точного времени и устанавливают текущие значения времени и даты с часов УССВ.

Сличение текущих значений времени и даты счетчиков с текущим значением времени и даты CCД - при каждом сеансе связи, но не реже 1 раза в сутки, корректировка осуществляется при расхождении времени $\pm 1,0$ с.

Погрешность часов компонентов системы не превышает ±5 с.

Программное обеспечение

В состав ПО АИИС КУЭ входит: ПО счетчиков электроэнергии, ПО ССД и СБД АИИС КУЭ. Программные средства ССД и СБД АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных (СУБД) и прикладное ПО ИВК «Альфа Центр», ПО СОЕВ.

Состав программного обеспечения АИИС КУЭ приведён в таблице 1.

Таблица 1

таолица т	T			T == 4	
Наименова-	Наименование про-	Наименова-	Номер вер-	Цифровой иденти-	Алгоритм
ние про-	граммного модуля	ние файла	сии про-	фикатор программно-	вычисления
граммного	(идентификационное		граммного	го обеспечения (кон-	цифрового
обеспечения	наименование про-		обеспече-	трольная сумма ис-	идентифика-
	граммного обеспе-		ния	полняемого кода)	тора про-
	чения)				граммного
					обеспечения
ПО «Альфа	Программа-	Amrserver.exe	3.27.3.0	58a40087ad0713aaa6	MD5
Центр»	планировщик опро-			668df25428eff7	
	са и передачи дан-				
	ных (стандартный				
	каталог для всех				
	модулей)				
	драйвер ручного оп-	Amrc.exe		7542c987fb7603c985	
	роса счетчиков и			3c9alll0f6009d	
	УСПД				
	Драйвер автомати-	Amra.exe		3f0d215fc6l7e3d889	
	ческого опроса	7 Hill a.c.xc		8099991c59d967	
	счетчиков ЕА05			00////103/4/01	
	o tot mikob za tos				
	ГП	C 41 2 411		1. 426 16-07071 1 646 11.	
	драйвер работы с БД	Cdbora2.dll		b436dfc978711f46db	
				31bdb33f88e2bb	
	· '	alfamess.dll		40cl0e827a64895c32	
	ний планировщика			7e018dl2f75181	
	опроса				

ПО ИВК «Альфа Центр» не влияет на метрологические характеристики АИИС КУЭ «ВКЗ».

Уровень защиты программного обеспечения АИИС КУЭ «ВКЗ» от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ «ВКЗ» приведен в Таблице 2.

Пределы допускаемой относительной погрешности измерения активной и реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ приведены в Таблице 3. Таблица 2

1 4	OJI	ица 2					
	×		Состав измерительного канала				Вид
№ п/п	№ ИИК	Наименование объекта	Трансформатор тока	Трансформатор напряжения	Счётчик электрической энергии	ИВКЭ (УСПД)	электро- энергии
1	2	3	4	5	6	7	8
			ТПК-10	НАМИ-10-95УХЛ2	EA05RAL-P4BN-4		
			кл. т 0,5	кл. т 0,5	кл. т 0,5Ѕ/1,0	Сервер HP ProLiant DL380	
1	1	ТП-1 6/0,4кВ, 1 с.ш., 6кВ,	$K_{TT} = 600/5$	Kth = 6000/100	Зав. № 01099125	Зав. №	активная
1	1	яч.1	Зав. № 4663; 4695	Зав. № 229	Госреестр № 16666- 97	Госреестр	реактивная
			Госреестр № 8914-82	Госреестр № 20186- 05		№ 44595-10	
			ТПОЛ-10	НТМК-6	EA05RAL-P4BN-4	Сервер	
			кл. т 0,5	кл. т 0,5	кл. т 0,5Ѕ/1,0	HP ProLiant DL380	
2	2	ЦРП 6кB, 1 с.ш., яч.8	$K_{TT} = 600/5$	Kth = 6000/100	Зав. № 01099180	Зав. №	активная
			Зав. № 5320; 4127	Зав. № 1174	Госреестр № 16666- 97	Госреестр	реактивная
			Госреестр № 1261-08	Госреестр № 323-49		№ 44595-10	
			ТВК-10	НТМК-6	EA05RAL-P4BN-4	Сервер	
			кл. т 0,5	кл. т 0,5	кл. т 0,5Ѕ/1,0	HP ProLiant DL380	
3	3	ЦРП 6кB, 2 с.ш., яч.12	$K_{TT} = 400/5$	Kth = 6000/100	Зав. № 01099179	Зав. №	активная
			Зав. № 29109; 3574	Зав. № 1245	Госреестр № 16666- 97	Госреестр № 44595-10	реактивная
			Госреестр № 8913-82	1 1		Nº 44393-10	
			ТПОЛ-10	НТМК-6	EA05RAL-P4BN-4	Сервер	
			кл. т 0,5	кл. т 0,5	кл. т 0,5Ѕ/1,0	HP ProLiant DL380	
4	4	ЦРП 6кB, 2 с.ш., яч.18	$K_{TT} = 600/5$	Kth = 6000/100	Зав. № 01099182	Зав. №	активная реактивная
			Зав. № 4126; 4894	Зав. № 1245	Госреестр № 16666- 97	Госреестр № 44595-10	рсактивная
			Госреестр № 1261-08	1 1		Nº 44333-10	
			ТПК-10	НАМИ-10-95УХЛ2	EA05RAL-P4BN-4	Сервер	
		DV C D (NA) 1	кл. т 0,5	кл. т 0,5	кл. т 0,5\$/1,0	HP ProLiant DL380	
5	5	РУ-6кВ (цех №4), 1 с.ш., яч.4	$K_{TT} = 600/5$	$K_{TH} = 6000/100$	Зав. № 01099124	Зав. №	активная
			Зав. № 4610; 4572	Зав. № 226	Госреестр № 16666- 97	Госреестр	реактивная
			Госреестр № 1261-08	Госреестр № 20186- 05	,	№ 44595-10	

Таблица 3

Пределы допускаемой относительной погрешности измерения активной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ					
Номер ИИК	cosφ	$\delta_{1(2)\%},$ $I_{1(2)} \le I_{\text{изм}} < I_{5\%}$	$\delta_{5\%},$ $I_{5\%} \le I_{_{133M}} < I_{_{20\%}}$	$\delta_{20\%},$ I $_{20\%} \le$ I $_{_{\rm H3M}} <$ I $_{100\%}$	$\delta_{100 \%},$ $I_{100 \%} \le I_{130} \le I_{120 \%}$
	1,0	-	±2,2	±1,7	±1,6
1 - 5	0,9	-	±2,7	±1,9	±1,7
	0,8	-	±3,2	±2,1	±1,9
(TT 0,5; TH 0,5; C4 0,5S)	0,7	-	±3,8	±2,4	±2,1
(11 0,5, 111 0,5; C4 0,55)	0,5	-	±5,7	±3,3	±2,7

Продолжение таблицы 3

Пределы допускаемой относительной погрешности измерения реактивной электрической					
энергии в рабочих условиях эксплуатации АИИС КУЭ					
Номер ИИК	cosφ	$\delta_{1(2)\%}$,	$\delta_{5\%},$	δ _{20 %} ,	δ _{100 %} ,
		$I_{1(2)} \le I_{u_{3M}} < I_{5\%}$	$\rm I_{5~\%} \le I_{\rm u3M} < I_{\rm 20~\%}$	I $_{20\%} \le$ I $_{_{\rm H3M}} <$ I $_{100\%}$	$I_{100 \%} \le I_{_{113M}} \le I_{120 \%}$
1 - 5	0,9	-	±7,6	±4,2	±3,2
	0,8	-	±5,0	±2,9	±2,4
(ТТ 0,5; ТН 0,5; Сч 1,0)	0,7	-	±4,2	±2,6	±2,2
	0,5	-	±3,3	±2,2	±2,0

Примечания:

- 1. Погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $d_{1(2)\%P}$ и $d_{1(2)\%Q}$ для $\cos j < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98·Uном до 1,02·Uном;
 - сила тока от Іном до 1,2-Іном, $\cos \mathbf{j} = 0.9$ инд;
 - температура окружающей среды: от 15 до 25 °C.
- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9-Ином до 1,1-Ином,
 - сила тока от 0,05 Іном до 1,2 Іном;
 - температура окружающей среды:
 - для счетчиков электроэнергии от плюс 5 °C до плюс 35 °C;
 - для трансформаторов тока по ГОСТ 7746-2001;
 - для трансформаторов напряжения по ГОСТ 1983-2001.
- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ P 52323-2005, Γ OСТ 30206-94, в режиме измерения реактивной электроэнергии по Γ OСТ 26035-83, Γ OСТ 52425-2005;
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 1. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- \bullet счетчик электроэнергии "ЕвроАЛЬФА" среднее время наработки на отказ не менее 80000 часов;
 - УССВ-35 HVS среднее время наработки на отказ не менее 35000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

• клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;

- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УССВ, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии ЕвроАЛЬФА до 5 лет при температуре 25 °C;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4 Таблица 4

1 400	ица т		
№ п/п	Наименование	Тип	Количество, шт.
1	2	3	4
1	Трансформатор тока	ТПК-10	4
2	Трансформатор тока	ТПОЛ-10	4
3	Трансформатор тока	ТВК-10	2
4	Трансформатор напряжения	НТМК-6	3
5	Трансформатор напряжения	НАМИ-10-95	2
6	Счётчик электрической энергии	EA05RAL-P4BN-4	5
7	Модем	Nokia 30	1
8	Сервер	HP Proliant DL380	1
9	Источник бесперебойного питания	APC Smart-UPS 1500VA	1
10	Устройство синхронизации системного времени	УССВ-35LVS	1
11	Специализированное программное обеспечение	ПО «Альфа-Центр»	1
12	Методика поверки	МП 1276/446-2012	1
13	Паспорт – формуляр	02.2012.ВКЗ-АУ.ФО-ПС	1

Поверка

осуществляется по документу МП 1276/446-2012 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) «ВКЗ». Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» в мае 2012 года.

Средства поверки – по НД на измерительные компоненты:

- TT − πο ΓΟCT 8.217-2003;
- TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- Счётчик ЕвроАЛЬФА в соответствии с документом «Многофункциональные счетчики электроэнергии типа ЕвроАльфа. Методика поверки», утвержденным ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева»
- Термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50°C, цена деления 1°C.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе: «Методика (метод) измерений количества электрической энергии (мощности) с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) «ВКЗ». Свидетельство об аттестации методики (метода) измерений № 996/446-01.00229-2012 от 10.05.2012

Нормативные документы, устанавливающие требования к АИИС КУЭ «ВКЗ»

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6 ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 7 ГОСТ Р 52425-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «ПромЭнергоСервис»

Адрес (юридический): 426034, УР, г. Ижевск, ул. Удмуртская, 304

Адрес (почтовый): 426033, УР, г. Ижевск, ул. 30 лет Победы, д.2, оф.713

Телефон: (495) 788-48-25 Факс: (495) 788-48-25

Заявитель

ООО «Производственно-коммерческая фирма «Тенинтер»

Адрес (юридический): 109202, г. Москва, ул. 3-я Карачаровская, д. 8, корп. 2

Адрес (почтовый): 109444, г. Москва, Ферганская ул., д. 6, стр. 3

Телефон: (495) 788-48-25 Факс: (495) 788-48-25

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»).

Аттестат аккредитации № 30010-10 от 15.03.2010 года.

117418 г. Москва, Нахимовский проспект, 31 Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11

Факс (499) 124-99-96

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.П. «___» ____2012г.