

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.010.A № 47460

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Московской ЖД – филиала ОАО "РЖД" в границах Тульской области

ЗАВОДСКОЙ НОМЕР 580

ИЗГОТОВИТЕЛЬ

Открытое акционерное общество "Российские Железные Дороги" (ОАО "РЖД"), г. Москва

РЕГИСТРАЦИОННЫЙ № 50649-12

ДОКУМЕНТ НА ПОВЕРКУ МП 1313/446-2012

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 24 июля 2012 г. № 512

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства		Е.Р.Петросян
	-и и	2012 г.

№ 005762

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Московской ЖД - филиала ОАО "РЖД" в границах Тульской области

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Московской ЖД — филиала ОАО "РЖД" в границах Тульской области (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ, построенная на основе ИВК «Альфа-Центр» (Госреестр № 20481-00), представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-ый уровень - измерительные каналы (далее — ИК), включают в себя измерительные трансформаторы тока и напряжения и счетчики активной и реактивной электроэнергии, шлюзы коммуникационные ШК-1, вторичные измерительные цепи и технические средства приемапередачи данных;

2-ой уровень — измерительно-вычислительный комплекс регионального Центра энергоучёта, реализован на базе устройства сбора и передачи данных (УСПД RTU-327, Госреестр № 41907-09, зав. № 001229), выполняющего функции сбора, хранения результатов измерений и передачи их на уровень ИВК, и содержит программное обеспечение (далее — ПО) "Альфа-Центр", с помощью которого решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов;

3-ий уровень — измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (далее — ИВК), реализованный на базе серверного оборудования (серверов сбора данных — основного и резервного, сервера управления), ПО "ЭНЕРГИЯ-АЛЬФА", включающий в себя каналы сбора данных с уровня регионального Центра энергоучёта, каналы передачи данных субъектам ОРЭ.

Измерительно-информационные каналы (далее – ИИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД уровня ИВК регионального Центра энергоучета, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

АЙИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации времени в системе в состав ИВК входит устройство синхронизации системного времени (УССВ) типа 35LVS (35HVS). Устройство синхронизации системного времени УССВ обеспечивает автоматическую синхронизацию часов сервера, при превышении порога ± 1 с происходит коррекция часов сервера. Часы УСПД синхронизируются при каждом сеансе связи УСПД - сервер, коррекция проводится при расхождении часов УСПД и сервера на значение, превышающее ± 1 с. Часы счетчика синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчика и УСПД более чем на ± 2 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по протоколу NTP по оптоволоконной связи, задержками в линиях связи пренебрегаем ввиду малости значений. Поправка часов счетчика согласно описанию типа $\pm 0,5$ с, а с учетом температурной составляющей – $\pm 1,5$ с. Ход часов компонентов системы не превышает ± 5 с/сут.

Программное обеспечение

Уровень регионального Центра энергоучета содержит ПО "Альфа-Центр", включающее в себя модули " Альфа-Центр АРМ", " Альфа-Центр СУБД "Oracle", " Альфа-Центр Коммуникатор". С помощью ПО "Альфа-Центр" решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов.

Уровень ИВК Центра сбора данных содержит ПО "ЭНЕРГИЯ-АЛЬФА", включающее в себя модуль "Энергия Альфа 2". С помощью ПО "ЭНЕРГИЯ-АЛЬФА" решаются задачи автоматического накопления, обработки, хранения и отображения измерительной информации.

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентификацион ный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм цифрового идентификат ора ПО
" Альфа- Центр"	" Альфа-Центр АРМ"	4	a65bae8d7150931f 811cfbc6e4c7189d	MD5
" Альфа- Центр"	" Альфа-Центр СУБД "Oracle"	9	bb640e93f359bab1 5a02979e24d5ed48	MD5
" Альфа- Центр"	" Альфа-Центр Коммуникатор"	3	3ef7fb23cf160f566 021bf19264ca8d6	MD5
"ЭНЕРГИЯ- АЛЬФА"	ПК "Энергия Альфа 2"	2.0.0.2	17e63d59939159ef 304b8ff63121df60	MD5

Таблица 1 - Сведения о программном обеспечении.

- Метрологические характеристики ИИК АИИС КУЭ, указанные в таблицах 3,4 нормированы с учетом ПО;
- Уровень защиты ПО от непреднамеренных и преднамеренных изменений уровень «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Состав 1-го и - 2-го уровеней измерительно-информационных каналов АИИС КУЭ тяговых подстанций Московской ЖД филиала ОАО «РЖД» в границах Тульской области приведен в Таблице 2.

Пределы допускаемой относительной погрешности ИИК АИИС КУЭ при измерении активной и реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ приведены в Таблицах 3, 4.

Таблица 2 - Состав ИИК АИИС КУЭ

	Состав ИИК (1 - 2 уровень)						
№ дисп. Наим	№ ИИК	Диспетчерское наименование точки учета	Трансформатор тока		Сиётиик	ИВКЭ (УСПД)	Вид электро- энергии
1	2	3	4	5	6	7	8
1	10	ЭЧЭ Ревякино Ф-ЛЭП-Север-10кВ	ТПЛ-10 кл. т 0,5 Ктт = 50/5 Зав. № 822; 1167 Госреестр № 1276-59	НАМИ-10-95 УХЛ2 кл. т 0,5 Ктн = 10000/100 Зав. № 1420; 1420; 1420 Госреестр № 20186- 05	EA05RL-P1B-3 кл. т 0,5S/1,0 Зав. № 1049200 Госреестр № 16666- 07	RTU-327 зав. № 001229 Госреестр № 41907 - 09	активная реактивная
2	11	ЭЧЭ Ревякино КВ-1	ТПОЛ-10 кл. т 0,5 Ктт = 600/5 Зав. № 23334; 23310; 23372 Госреестр № 1261-08	НАМИ-10-95 УХЛ2 кл. т 0,5 Ктн = 10000/100 Зав. № 1420; 1420; 1420 Госреестр № 20186- 05	А1R-3-0L-C4-T+ кл. т 0,2S/0,5 Зав. № 1031230 Госреестр № 14555- 02	RTU-327 зав. № 001229 Госреестр № 41907 - 09	активная реактивная
3	12	ЭЧЭ Ревякино Ф-ЛЭП-Юг-10кВ	ТПЛ-10 кл. т 0,5 Ктт = 75/5 Зав. № 8088; 4478 Госреестр № 1276-59	НАМИ-10-95 УХЛ2 кл. т 0,5 Ктн = 10000/100 Зав. № 1419; 1419; 1419 Госреестр № 20186- 05	EA05RL-P1B-3 кл. т 0,5S/1,0 Зав. № 1049223 Госреестр № 16666- 07	RTU-327 зав. № 001229 Госреестр № 41907 - 09	активная реактивная
4	13	ЭЧЭ Ревякино Ф-СЦБ-Север-6кВ	ТПФМ-10 кл. т 3,0 Ктт = 10/5 Зав. № 49330; 49181 Госреестр № 814-53	НТМИ-6-66 кл. т 0,5 Ктн = 6000/100 Зав. № ПККУ; ПККУ; ПККУ	EA05RL-P1B-3 кл. т 0,5S/1,0 Зав. № 1049258 Госреестр № 16666- 07	RTU-327 зав. № 001229 Госреестр № 41907 - 09	активная реактивная
5	14	ЭЧЭ Ревякино Ф-СЦБ-Юг-6кВ	ТПЛМ-10 кл. т 0,5 Ктт = 10/5 Зав. № 66522; 0786 Госреестр № 2363-68	НТМИ-6 кл. т 0,5 Ктн = 6000/100 Зав. № 96; 96; 96	EA05RL-P1B-3 кл. т 0,5S/1,0 Зав. № 1049247 Госреестр № 16666- 07	RTU-327 зав. № 001229 Госреестр № 41907 - 09	активная реактивная
6	15	ЭЧЭ Ревякино ЭЧК	Т-0,66У3 кл. т 0,5S Ктт = 100/5 Зав. № 179410; 12448 Госреестр № 40473-09	-	EA05RL-P1B-3 кл. т 0,5S/1,0 Зав. № 1049272 Госреестр № 16666- 07	RTU-327 зав. № 001229 Госреестр № 41907 - 09	активная реактивная
7	16	ЭЧЭ Ревякино СЦБ	Т-0,66У3 кл. т 0,5S Ктт = 300/5 Зав. № 191016; 191018; 191053 Госреестр № 40473-09	-	EA05RL-P1B-3 кл. т 0,5S/1,0 Зав. № 1049232 Госреестр № 16666- 07	RTU-327 зав. № 001229 Госреестр № 41907 - 09	активная реактивная

Таблица 3 - Метрологические характеристики ИИК (активная энергия)

Пределы допускаемой относительной погрешности ИИК АИИС КУЭ						
		$\delta_{1(2)\%}$,	δ _{5 %} ,	$\delta_{20\%},$	δ _{100 %} ,	
Номер ИИК	cosφ	$I_{1(2)} \le I_{\text{изм}} < I_5$			$I_{100} \% \le I_{_{H3M}} \le I_{_{120} \%}$	
	1,0	-	±2,2	±1,7	±1,6	
1, 3, 5	0,9	-	±2,7	±1,9	±1,7	
	0,8	-	±3,2	±2,1	±1,9	
(TT 0,5; TH 0,5; C4 0,5S)	0,7	-	±3,8	±2,4	±2,1	
(11 0,3, 111 0,3, C4 0,33)	0,5	ı	±5,7	±3,3	±2,7	
	1,0	1	±1,9	±1,2	±1,0	
2	0,9	1	±2,4	±1,4	±1,2	
	0,8	-	±2,9	±1,7	$\pm 1,4$	
(ТТ 0,5; ТН 0,5; Сч 0,2S)	0,7	1	±3,6	±2,0	±1,6	
(11 0,3, 111 0,3, C4 0,23)	0,5	-	±5,5	±3,0	±2,3	
	1,0	-	±3,6	±2,2	±1,9	
4	0,9	-	±4,6	±2,7	±2,1	
	0,8	-	±5,7	±3,2	±2,4	
(TT 3,0; TH 0,5; C4 0,5S)	0,7	-	±7,0	±3,8	±2,8	
(11 3,0, 111 0,3, € 10,35)	0,5	-	±10,7	±5,6	±4,0	
	1,0	±1,8	±1,1	±0,9	±0,9	
6 - 7	0,9	±2,1	±1,3	±1,0	±1,0	
	0,8	±2,5	±1,6	±1,2	±1,2	
(TT 0,5S; C4 0,5S)	0,7	±3,1	±1,9	±1,4	$\pm 1,4$	
(110,35, C10,35)	0,5	±4,7	±2,8	±1,9	±1,9	

Таблица 4 - Метрологические характеристики ИИК (реактивная энергия)

Продолу долуческие характеристики итик (реактивная энергия)								
Пределы допускаемой относительной погрешности ИИК АИИС КУЭ								
11 1111/		$\delta_{1(2)\%}$,	$\delta_{5\%},$	$\delta_{20\%},$	$\delta_{100~\%},$			
Номер ИИК	cosφ	$I_{1(2)} \le I_{u_{3M}} < I_{5}$	$I_{5,0} < I_{} < I_{20,0}$	I 20 0/ < I < I 100 0/	$I_{100 \%} \le I_{_{\rm H3M}} \le I_{120 \%}$			
		%	-5 % N3M \ - 20 %	20 % = 1 usm \ 1 100 %	-100 %— - изм— - 120 %			
1, 3, 5	0,9	-	±7,6	±4,2	±3,2			
1, 3, 3	0,8	-	±5,0	±2,9	±2,4			
(ТТ 0,5; ТН 0,5; Сч 1,0)	0,7	-	±4,2	±2,6	±2,2			
(11 0,3, 111 0,3, C4 1,0)	0,5	-	±3,3	±2,2	±2,0			
2	0,9	-	±7,1	±3,9	±2,9			
2	0,8	-	±4,5	±2,5	±1,9			
(ТТ 0,5; ТН 0,5; Сч 0,5)	0,7	-	±3,7	±2,1	±1,7			
(11 0,3, 1H 0,3, C4 0,3)	0,5	-	±2,7	±1,6	±1,3			
4	0,9	-	±14,0	±7,2	±5,1			
4	0,8	-	±8,8	±4,6	±3,4			
(ТТ 3,0; ТН 0,5; Сч 1,0)	0,7	-	±7,2	±3,9	±2,9			
(11 3,0, 111 0,3, C4 1,0)	0,5	-	±5,2	±2,9	±2,4			
6 - 7	0,9	±8,2	±4,6	±3,0	±2,8			
0 - 7	0,8	±5,6	±3,3	±2,3	±2,2			
(ТТ 0,5Ѕ; Сч 1,0)	0,7	±4,8	±3,0	±2,1	±2,0			
(110,33, C41,0)	0,5	±4,0	±2,5	±1,9	±1,8			

Примечания:

1. Характеристики погрешности ИИК даны для измерения электроэнергии и средней мощности (получасовой);

2. Нормальные условия эксплуатации:

Параметры сети:

- диапазон напряжения (0,99 1,01) Uн;
- диапазон силы тока (0,01 1,2)Ін;
- диапазон коэффициента мощности соѕф (sinф) 0,5 1,0 (0,87 0,5);
- температура окружающего воздуха: ТТ и ТН от минус 40 °C до 50 °C; счетчиков от 18 °C до 25 °C; ИВКЭ от 10 °C до 30 °C; ИВК от 10 °C до 30 °C;
- частота (50 ± 0.15) Гц;
- магнитная индукция внешнего происхождения, не более 0,05 мТл.

3. Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения (0.9 1.1)Uн₁; диапазон силы первичного тока (0.01 1.2)Iн₁; коэффициент мощности $\cos \phi(\sin \phi)$ 0.8 1.0 (0.6 0.5); частота (50 ± 0.4) Γ ц;
- температура окружающего воздуха от минус 30 °C до 35 °C.

Для счетчиков электроэнергии:

- параметры сети: диапазон вторичного напряжения (0.9 1.1)Uн₂; диапазон силы вторичного тока (0.01 1.2)Iн₂; коэффициент мощности $\cos \phi(\sin \phi)$ 0.8 1.0 (0.6 0.5); частота (50 ± 0.4) Гц;
- температура окружающего воздуха от 10 °C до 30 °C;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 4. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ 30206-94,ГОСТ Р 52323-2005, в режиме измерения реактивной электроэнергии по ГОСТ 26035-83, ГОСТ Р 52425-2005.
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 4 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- счетчик «ЕвроАльфа» среднее время наработки на отказ не менее 80000 часов, среднее время восстановления работоспособности 48 часов;
- счетчик «Альфа плюс» среднее время наработки на отказ не менее 50000 часов, среднее время восстановления работоспособности 48 часов;
- УСПД среднее время наработки на отказ не менее 100000 часов, среднее время восстановления работоспособности 1 час.

Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства АВР;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
- в журналах событий счетчика и УСПД фиксируются факты:
 - **ü** параметрирования;
 - **ü** пропадания напряжения;
 - **ü** коррекция времени.

Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
 - ü счетчика;

- **ü** промежуточных клеммников вторичных цепей напряжения;
- ü испытательной коробки;
- ü УСПД.
- наличие защиты на программном уровне:
 - **ü** пароль на счетчике;
 - **ü** пароль на УСПД;
 - **ü** пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания до 5 лет;
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 3 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) тяговых подстанций Московской ЖД – филиала ОАО "РЖД" в границах Тульской области типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений. Комплектность АИИС КУЭ представлена в таблице 5. Таблица 5 - Комплектность АИИС КУЭ

Таолица 3 - Комплектность Атис Ку 3	
Наименование	Кол-во, шт.
1	2
Трансформаторы тока проходные с литой изоляцией ТПЛ-10	5
Трансформаторы тока ТПОЛ-10	3
Трансформаторы тока ТПФМ-10	2
Трансформаторы тока ТПЛМ-10	1
Трансформаторы тока Т-0,66 УЗ	5
Трансформаторы напряжения НАМИ-10-95 УХЛ2	2
Трансформаторы напряжения НТМИ-6-66	1
Трансформаторы напряжения НТМИ-6	1
Устройство сбора и передачи данных серии RTU-327	1
Счётчики электроэнергии многофункциональные типа Альфа	1
Счётчики электрической энергии многофункциональные ЕвроАльфа	5
Устройство синхронизации системного времени на базе GPS- приемника	1
Сервер управления HP ML 360 G5	1
Сервер основной БД HP ML 570 G4	1
Сервер резервный БД HP ML 570 G4	1
Методика поверки МП 1313/446-2012	1
Формуляр	1

Поверка

осуществляется по документу МП 1313/446-2012 "Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Московской ЖД - филиала ОАО "РЖД" в границах Тульской области. Методика поверки", утвержденному ГЦИ СИ ФБУ "РОСТЕСТ-МОСКВА" в июне 2012 г.

Средства поверки – по НД на измерительные компоненты:

- Трансформаторы тока в соответствии с ГОСТ 8.217-2003 "ГСИ. Трансформаторы тока. Методика поверки";
- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88 "ГСИ. Трансформаторы напряжения. Методика поверки" и/или МИ 2925-2005 "Измерительные трансформаторы напряжения 35...330/√3 кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя";
- Средства измерений МИ 3195-2009 «Государственная система обеспечения единства измерений мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений».
- Средства измерений МИ 3196-2009 «Государственная система обеспечения единства измерений вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- "Альфа Плюс" по документу "Многофункциональные счётчики электрической энергии типа АЛЬФА. Методика поверки."
- "ЕвроАльфа" по документу "Многофункциональный многопроцессорный счётчик электрической энергии типа ЕвроАЛЬФА (ЕА). Методика поверки."
- УСПД RTU-327 по документу "Устройства сбора и передачи данных серии RTU-327. Методика поверки. ДЯИМ.466215.007.МП";
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе "Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Московской ЖД - филиала ОАО "РЖД" в границах Тульской области".

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) тяговых подстанций Московской ЖД – филиала ОАО "РЖД" в границах Тульской области

- 1. ГОСТ 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия".
- 2. ГОСТ 34.601-90 "Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания".
- 3. ГОСТ Р 8.596-2002 "ГСИ. Метрологическое обеспечение измерительных систем. Основные положения".
- 4. ГОСТ 7746–2001 "Трансформаторы тока. Общие технические условия".
- 5. ГОСТ 1983–2001 "Трансформаторы напряжения. Общие технические условия".

- 6. ГОСТ Р 52323-2005 (МЭК 62053-22:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S".
- 7. ГОСТ Р 52425-2005 (МЭК 62053-23:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Открытое акционерное общество "Российские Железные Дороги" (ОАО "РЖД")

Адрес: 107174, г. Москва, Новая Басманная ул., д.2

Тел.: (499) 262-60-55 Факс: (499) 262-60-55 e-mail: <u>info@rzd.ru</u> http://www.rzd.ru/

Заявитель

Общество с ограниченной ответственностью "Инженерный центр "ЭНЕРГОАУДИТКОНТРОЛЬ" (ООО «ИЦ ЭАК»)

Адрес: 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4

Тел. (495) 620-08-38 Факс (495) 620-08-48

Испытательный центр

Государственный центр испытаний средств измерений ФБУ «РОСТЕСТ-МОСКВА» (ГЦИ СИ ФБУ «РОСТЕСТ-МОСКВА»)

Юридический адрес:

117418 г. Москва, Нахимовский проспект, 31

тел./факс: 8(495) 544 00 00

Регистрационный номер аттестата аккредитации государственного центра испытаний средств измерений № 30010-10 от 15.03.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

М.П.	"	"	20	Γ.

Е.Р. Петросян