

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

FR.C.31.001.A № 47565

Срок действия до 30 июля 2017 г.

HAUMEHOBAHUE ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Газоанализаторы лазерные SITRANS SL

ИЗГОТОВИТЕЛЬ

Фирма "SIEMENS AG", подразделение "SIEMENS S.A.S.", Франция

РЕГИСТРАЦИОННЫЙ № 50718-12

ДОКУМЕНТ НА ПОВЕРКУ МП-242-1232-2011

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 30 июля 2012 г. № 548

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства Е.Р.Петросян

"...... 2012 г.

№ 005995

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Газоанализаторы лазерные SITRANS SL

Назначение средства измерений

Газоанализатор лазерный SITRASN SL предназначен для автоматического измерения объемной доли кислорода или оксида углерода в технологических и дымовых газовых потоках.

Описание средства измерений

Принцип действия газоанализатора – фотометрический.

Газоанализатор представляет собой прибор непрерывного действия, работающий по принципу однолинейной молекулярной абсорбционной спектроскопии.

Газоанализатор SITRANS SL состоит из пары датчиков с перекрестными каналами, с блоками передатчика и приемника. Блок передатчика оснащен лазером, луч которого распространяется на приемник вдоль пути измерения. В блоке приемника находится фотодетектор с электронным устройством. Блок приемника подключен к передатчику с помощью соединительного кабеля датчиков. Соединительный кабель приемника используется для подключения электропитания и связных интерфейсов. В корпусе приемника находится локальный интерфейс пользователя вместе с ЖК-дисплеем, информацию с которого можно считывать через окошко в крышке. В стандартных условиях управляется посредством пульта дистанционного управления. Конструктивно газоанализатор выполнен в виде двух блоков – приемника и передатчика.

Диодный лазер передатчика испускает инфракрасный луч, который проходит через анализируемый газ и детектируется блоком приемника. Длина волны выходного сигнала диодного лазера соответствует линии поглощения определяемого газа. Лазер непрерывно сканирует эту линию поглощения с высоким спектральным разрешением. Измерения не подвержены влиянию каких-либо помех, поскольку квазимонохроматическое излучение лазера поглощается предельно выборочно на конкретной длине волны в сканируемом спектральном диапазоне. Длина оптического пути составляет от 0,3 до 8,0 м. В зависимости от длины волны лазера газоанализатор измеряет концентрацию кислорода или оксида углерода.

На лицевой панели газоанализатора расположены дисплей для отображения результатов измерений, а также меню для установки параметров прибора.

Внешний вид прибора приведен на рис.1.

Рис.1. Внешний вид газоанализатора

Программное обеспечение

Газоанализатор имеет встроенное программное обеспечение, разработанное фирмойизготовителем специально для решения задач измерения объемной доли кислорода и оксида углерода в газовых пробах. Программное обеспечение обеспечивает вывод показаний концентрации на дисплей прибора, управление прибором и передачу данных.

Программное обеспечение идентифицируется по запросу пользователя через сервисное меню газоанализатора путем вывода на экран версии программного обеспечения.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1.

Наименование программного обеспечения	Идентифика- ционное на- именование программного обеспечения	Номер версии (идентифика- ционный но- мер) про- граммного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
Sitrans SL	SISL 2.30.04	2.30.04	0xE00A	16 bit CRC/CCITT

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» согласно МИ 3286-2010.

Влияние программного обеспечения на метрологические характеристики учтено при нормировании метрологических характеристик.

Метрологические и технические характеристики

1. Диапазоны измерений объемной доли определяемых компонентов, пределы допускаемой основной погрешности газоанализатора и цена единицы наименьшего разряда приведены в таблицах 2 и 3 (при длине оптического пути 1 м).

Таблина 2

Определяемый компонент	Диапазон измерений объемной доли кисслорода, %	Пределы допускаемой основной относительной погрешности, %	Номинальная цена единицы наименьшего разряда дисплея, %
Кислород	от 1 до 100	± 10	0,1

Таблица 3

	Диапазон	Пределы допускаемой	Номинальная цена
Определяемый	измерений объ-	основной относитель-	единицы наименьшего
компонент	емной доли ок-	ной	разряда дисплея, млн-1
	сида углерода,	погрешности, %	
	млн-1		
Окись углерода	от 100 до 6000	± 10	0,1

- 2. Время установления показаний (время записи данных в зависимости от измеряемой концентрации): от 2 до 10 с.
- 3. Предел допускаемой вариации показаний, $b_{\text{д}}$, в долях от предела допускаемой основной погрешности: 0,3
- 4. Дополнительная погрешность от влияния изменения температуры окружающей среды в диапазоне рабочих температур на каждые $10\,^{0}\mathrm{C}$ отклонения от номинального значения температуры $20\,^{\circ}\mathrm{C}$, в долях от переда допускаемой основной погрешности: 0,5.
 - 5. Электрическое питание осуществляется постоянным током напряжением 24 В.
 - 6. Потребляемая мощность, В А, не более: 10.
 - 7. Габаритные размеры, мм, не более: приемник и излучатель диаметр 165, длина 357 .
 - 8. Масса, кг, не более:
 - приемник 6,0;
 - излучатель 5,2.
 - 9. Полный средний срок службы, лет: 3
 - 10. Наработка на отказ, ч не менее: 25000
 - 11. Условия эксплуатации анализатора:
 - диапазон температуры окружающего воздуха от минус 20 до 55 °C;
 - относительная влажность окружающего воздуха до 95 % при температуре 30 °C;
 - диапазон атмосферного давления от 80 до 110,0 кПа ($630 \div 820$ мм рт.ст.).
 - 12. Параметры анализируемого газа на входе в анализатор:
 - диапазон температур от минус 20 до 70 °C

Знак утверждения типа

наносится типографским способом на титульный лист руководства по эксплуатации и на заднюю панель газоанализатора в виде наклейки.

Комплектность средства измерений

В комплект поставки анализатора входят:

- газоанализатор лазерный SITRANS SL (приемник)	1;
- газоанализатор лазерный SITRANS SL (передатчик)	1;
- пульт дистанционного управления	1:
- руководство по эксплуатации, экз:	1;
- методика поверки № МП-242-1232-2011, экз.	1.

Поверка

осуществляется по документу МП-242-1232-2011 «Газоанализатор лазерный SITRANS SL. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» в сентябре $2011\ \Gamma$.

Основные средства поверки:

- стандартные образцы состава: газовые смеси O_2/N_2 Γ CO 3720-87 и Γ CO 3729-87;
- стандартные образцы состава: газовые смеси CO/N₂ ГСО 3806-87 и ГСО 3816-87.
- поверочный нулевой газ азот особой чистоты по ГОСТ 9293-74.

Сведения о методиках (методах) измерений

Методы измерений в газовых потоках приведены в документе «Газоанализатор лазерный SITRANS SL. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к газоанализатору лазерному SITRANS SL

- 1 ГОСТ 8.578-2008 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
- 2 ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.
- 3 Техническая документация фирмы «Siemens AG», подразделение «Siemens S.A.S», Франция.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

охрана окружающей среды.

Изготовитель

фирма «SIMENS AG», подразделение «SIEMENS S.A.S.», Франция Адрес: 1 Chemin de la Sandlach, F-67506, Haguenau, Cedex, France.

Заявитель

ООО "Сименс"

Адрес: 115184, Москва, ул. Большая Татарская, 9 Тел.: +7(495) 737-2486, Факс: +7(495) 737-2399

e-mail: sc.ru@siemens.com

TT				і центр
1/1/	ті іпі	ОТОП	T TIT III	IILAIITN
ĸĸ	JIDII	aiui	рпык	цспір

ГЦИ СИ ФГУП «ВНИЙМ им. Д.И. Менделеева», аттестат аккредитации № 30001-10. Адрес: 190005, Санкт-Петербург, Московский пр., д. 19, тел. (812) 251-76-01, факс: (812) 713-01-14, электронная почта: info@vniim.ru,

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.Π.

«____» 2012 г.