

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

CN.C.32.010.A № 47827

Срок действия до 24 августа 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Системы постоянного измерения температуры HFC

изготовитель

"Shen Yang Heraeus JunCheng Electronic Co., Ltd.", Китай

РЕГИСТРАЦИОННЫЙ № 50957-12

ДОКУМЕНТ НА ПОВЕРКУ МП РТ 1688-2012

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 24 августа 2012 г. № 650

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства Ф.В.Булыгин

"...... 2012 г.

№ 006288

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Системы постоянного измерения температуры НFС

Назначение средства измерений

Системы постоянного измерения температуры HFC предназначены для непрерывного измерения температуры жидкой стали в промежуточных ковшах машин непрерывного литья и других агрегатах.

Описание средства измерений

Системы постоянного измерения температуры HFC состоят из чехла TMT (temperature measuring tube), детектора сигнала, блока процессора с ЖК-дисплеем, соединительного рукава с кабелем, внешнего дисплея (большой дисплей), установочного стакана (рисунок 1). Измерительная часть систем постоянного измерения температуры HFC состоит из детектора сигнала, блока процессора, соединительного рукава с кабелем (рисунок 2).

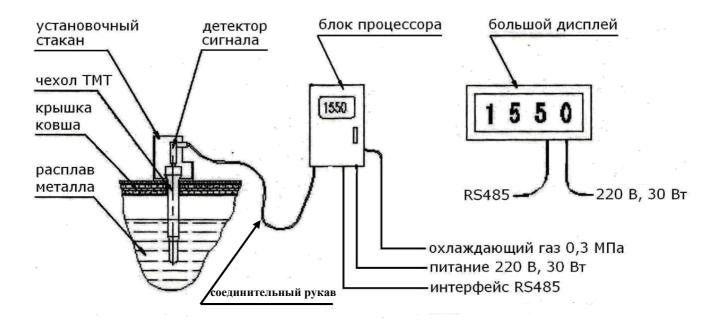


Рисунок 1

Принцип действия

Чехол ТМТ погружается в расплавленный металл на глубину не менее 260 мм. Через несколько минут температура нижней части чехла становится равной температуре расплавленного металла. Детектор сигнала (датчик инфракрасного излучения), установленный в верхней части чехла ТМТ, улавливает излучение с донной части чехла и, преобразуя энергию излучения в соответствующий электрический сигнал, передает его в блок процессора. В блоке процессора происходит обработка сигнала и преобразование его в значение температуры расплава, которая отображается на ЖК-дисплее блока процессора и (при наличии) на большом дисплее.

Для предотвращения несанкционированного доступа на крышку блока процессора устанавливается пломба. Хвостовик пломбы заводится в отверстия на крышке и на корпусе блока, далее в фиксирующее отверстие пломбы, и затягивается (рисунок 3).

Рисунок 2 Рисунок 3

Программное обеспечение

Внутреннее (встроенное) программное обеспечение (ПО), устанавливаемое при изготовлении прибора и не имеющее возможности считывания и модификации (ПО реализовано на масочной микросхеме), отображено в таблице 1.

Таблица 1

Наименова-	Идентификаци-	Номер версии	Цифровой идентифи-	Алгоритм вычис-
ние про-	онное наимено-	(идентификаци-	катор программного	ления цифрового
граммного	вание программ-	онный номер)	обеспечения (кон-	идентификатора
обеспечения	ного обеспечения	программного	трольная сумма испол-	программного
		обеспечения	няемого кода)	обеспечения
HFC	HFC	3.2.5	6DF30BA4A558E4B9E	MD5
пгС			FDDB78520DD0659	

Уровень защиты встроенного ПО от непреднамеренных и преднамеренных изменений – A по МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики систем постоянного измерения температуры HFC приведены в таблице 2.

Таблица 2

,	
Диапазон измерений, °С	от 850 до 1650
Предел абсолютной погрешности измерений температуры, °С	± 6
Температура эксплуатации, °С	от 10 до 70 (детектор сигнала),
	от 20 до 60 (блок процессора)
Температура хранения, °С	от –20 до + 50
Срок службы чехла ТМТ, ч, не менее	24
Питание	220 ± 10 В, 50 Гц
Потребляемая мощность, Вт, не более	
блок процессора	30
большой дисплей	30
Масса, кг, не более:	
блока процессора	13,6
большой дисплей	10,1
детектора сигнала	12,0
Габаритные размеры, м:	
блока процессора	$0,40 \times 0,14 \times 0,54$
большой дисплей	$0,65 \times 0,13 \times 0,30$
детектора сигнала	0,20×0,30×0,06
соединительный рукав с кабелем (длина)	4, 5, 6, 8, 10 м (по заказу)

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист руководства по эксплуатации и в виде наклейки на корпусе систем постоянного измерения температуры HFC.

Комплектность средства измерений

Комплектность средства измерений приведена в таблице 3.

Таблица 3

Наименование	
детектор сигнала	1
блок процессора	1
установочный стакан	
большой дисплей	
соединительный рукав с кабелем	
чехол ТМТ	
Руководство по эксплуатации (4.045.005 РЭ)	
Методика поверки МП РТ 1688-2012	
Упаковочная коробка	

Поверка

осуществляется по МП РТ 1688-2012 «Системы постоянного измерения температуры HFC. Методика поверки», утверждённой ГЦИ СИ ФБУ «Ростест-Москва» 16.01.12г.

Основные средства поверки приведены в таблице 4.

Таблица 4

Наименование средств измерений	Характеристики	
Пирометр инфракрасный	1 разряд, диапазон от 800 до 1700 °C	
Источник излучения в виде модели черного тела	2 разряд, диапазон от 800 до 1700 °C	

Сведения о методиках (методах) измерений

Сведения о методах измерений содержатся в руководстве по эксплуатации 4.045.005 РЭ «Системы постоянного измерения температуры HFC».

Нормативные и технические документы, устанавливающие требования к системам постоянного измерения температуры HFC

- 1 Техническая документация изготовителя «Shen Yang Heraeus JunCheng Electronic Co., Ltd».
- 2 ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».
- 3 ГОСТ 8.558 «ГСИ. Государственная поверочная схема для средств измерений температуры».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

«Shen Yang Heraeus JunCheng Electronic Co., Ltd», Китай

China, 26 Seventh Street, Economica Shenyang, China technology.

Телефон/Факс:86-24-25290745/86-24-25290595

Web: www.hlsjc.net

Заявитель

ООО «Хераеус Электро-Найт Челябинск».

Юридический и фактический адрес: 454047, г. Челябинск, ул. 2-ая Павелецкая, 36.

Телефон/Факс:(351)725-75-38

Web: http://www.heraeus-electro-nite.com

Испытательный центр

ГЦИ СИ ФБУ «Ростест–Москва», регистрационный номер 30010-10 от 15.03.2010г. 117418, г. Москва, Нахимовский проспект, 31.

Тел. (495) 544-00-00, (499) 129-19-11, факс (499) 124-99-96.

E-mail: info@rostest.ru, web: www.rostest.ru.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф.В.Булыгин
М.П	<u> </u>	»	2012r.