

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.004.A № 47836

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ОАО "АК "Транснефть" в части ООО "Дальнефтепровод" по НПС-40 без резервуарного парка (1-ая пусковая очередь)

ЗАВОДСКОЙ НОМЕР 09113599

изготовитель

Общество с ограниченной ответственностью "Дальнефтепровод" (ООО "Дальнефтепровод"), г.Хабаровск

РЕГИСТРАЦИОННЫЙ № 50965-12

ДОКУМЕНТ НА ПОВЕРКУ МП 50965-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 24 августа 2012 г. № 650

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства

والمنافعة المنافرة المنافرة والمنافرة والمنافر

Ф.В.Булыгин

"...... 2012 г.

Nº 006350

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ОАО "АК "Транснефть" в части ООО "Дальнефтепровод" по НПС-40 без резервуарного парка (1-ая пусковая очередь)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ОАО "АК "Транснефть" в части ООО "Дальнефтепровод" по НПС-40 без резервуарного парка (1-ая пусковая очередь) (далее - АИИС КУЭ) предназначена для измерения активной и реактивной энергии и мощности, а также для автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации. Результаты измерений системы могут использоваться для коммерческих расчетов.

Описание средства измерений

АИИС КУЭ реализована в объеме первой пусковой очереди и представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень — измерительно-информационные комплексы (далее - ИИК), включающие в себя измерительные трансформаторы тока (далее - ТТ) класса точности 0,5S по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее - ТН) класса точности 0,5 по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии СЭТ-4ТМ.03М класса точности 0,5S по ГОСТ Р 52323-2005 в части активной электроэнергии и 1,0 по ГОСТ Р 52425-2005 в части реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Устройство сбора и передачи данных (далее - УСПД) «ЭКОМ-3000» , установленное на уровне ИИК работает в «прозрачном» режиме при обращении сервера ИВК к счетчикам электроэнергии и выполняет функции шлюза-концентратора .

2-й уровень – информационно-вычислительный комплекс (далее - ИВК). Данный уровень включает в себя «Центр сбора и обработки данных (далее - ЦСОД) АИИС КУЭ ОАО «АК «Транснефть» (номер в Государственном реестре средств измерений 38424-08) и автоматизированные рабочие места (АРМы) диспетчеров (операторов АИИС КУЭ).

Уровень ИВК включает в себя:

- серверное оборудование, обеспечивающее сбор, обработку, хранение данных и формирование отчетных документов;
- оборудование приема-передачи информации, обеспечивающие приём и выдачу информации;
- вспомогательное оборудование, обеспечивающее бесперебойное питание основного оборудования, размещение, защиту и коммутацию оборудования;
- оборудование АРМ обслуживающего персонала;
- программное обеспечение (далее ПО) «Converge»;
- устройство синхронизации системного времени.

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за

период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности. Измерительная информация со счетчика электроэнергии передается без учета коэффициентов трансформации трансформаторов тока и напряжения. Счетчик электроэнергии на выходе формирует результаты измерений:

- активной и реактивной электрической энергии, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.;
- среднюю на интервале времени 30 мин активную (реактивную) электрическую мощность.

Данные со счетчиков поступают на уровень ИВК, где выполняется обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов, отображение информации на мониторах АРМ и передача данных в организации — участники оптового рынка электрической энергии и мощности через каналы связи.

АИИС КУЭ оснащена системой обеспечения единого времени (далее – СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы, погрешность часов компонентов системы не превышает ± 5 с. Задача синхронизации времени решается использованием службы единого координированного времени (или всемирного скоординированного времени) UTC. Для его трансляции используется спутниковая система позиционирования ГЛОНАСС/GPS. Синхронизация времени АИИС КУЭ с глобального единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г (номер в Государственном реестре средств измерений 39485-08), входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети TCP/IP согласно протоколу NTP (Network Time Protocol). ССВ-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает обновление данных на сервере ИВК постоянно и непрерывно. Сервер приложений «Converge» автоматически передает сформированные метки времени с периодичностью раз в сутки. При расхождении времени в сервере ИВК и счетчике на величину ±1 с происходит автоматическая коррекция времени в счетчике. Резервный сервер используется при выходе из строя основного сервера.

Минимальная скорость передачи информации в АИИС КУЭ по выделенным каналам корпоративной сети составляет 9600 бит/с.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Программное обеспечение

Уровень ИВК содержит ПО «Converge», с помощью которого решаются задачи автоматического накопления, обработки, хранения и отображения измерительной информации.

Таблица 1 - Сведения о программном обеспечении.

Наименова- ние ПО	Идентифика- ционное наименование ПО	Название файлов	Номер версии (идентифика- ционный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм цифрово- го идентификатора ПО
"Converge"	"Landis+Gyr Converge 3.5.1"	Converge. msi	3.5.001.268 Rev. 64500	B1E67B8256DE3 F5546A96054A20 62A1E	MD5
"ЭнергоМони тор"	"Energy Monitor"	Web Monitor Setup.msi	1.8.0.0	1E6CE427DAC58 9AFE884AB4906 32BC4B	MD5
" Генератор	" XML Report	XML Service Setup.msi	-	9486BC5FC4BC0 D326752E133D12 5F13D	MD5
XML-отчетов	Generator"	XML Client Setup.msi	-	37F58D0D9FB44 4D085405EB4A1 6E7A84	MD3
«ЭМ Администрат op»	«EM Admin»	EM Admin Setup.msi	-	621E4F49FB74E5 2F9FFADA2A073 23FBD	MD5
«Ручной импорт в Converge»	«Manual Converge Import»	Manual Converge Import.msi	-	ACA7D544FAD3 B166916B16BB9 9359891	MD5

- Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО;
- Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительно-информационных комплексов приведен в таблице 2.

Таблица 2 - Состав ИИК

	Состав измерительно-информационных комплексов									
Номер ИИК	Наименование объекта учета, диспетчерское наименование присоединения	Вид СИ, класс точности, коэффициент трансформации, № Госреестра СИ		класс точности, коэффициент трансформации,		класс точности, коэффициент трансформации, Обозначение, тип		УСПД	Наименование измеряемой величины	Вид энергии
1	2		3	4	5	6	7	8		
1	ЗРУ-10кВ Ввод №1 Яч. 1	Счетчик ТН ТТ	KT = 0,5S KTT = 1500/5 Госреестр № 25433-08 KT = 0,5 KTH = 10000: $\sqrt{3}/100$: $\sqrt{3}$ Госреестр № 24544-07 KT = 0,5S/1,0 Ксч = 1 Госреестр № 36697-08	A ТЛО-10 B ТЛО-10 C ТЛО-10 A ЗНОЛП B ЗНОЛП C ЗНОЛП CЭТ-4ТМ.03М.01	30000	ЭКОМ-3000	Мощность и энергия активная Мощность и энергия реактивная	Активная Реактивная		
2	ЗРУ-10кВ Ввод №2 Яч. 27	Счетчик ТН ТТ (KT = 0,5S KTT = 1500/5 Госреестр № 25433-08 KT = 0,5 Ктн = 10000: $\sqrt{3}/100$: $\sqrt{3}$ Госреестр № 24544-07 KT = 0,5S/1,0 Ксч = 1 Госреестр № 36697-08	A ТЛО-10 B ТЛО-10 C ТЛО-10 A ЗНОЛП B ЗНОЛП C ЗНОЛП CЭТ-4ТМ.03М.01	30000	Госреестр № 17049-09	Мощность и энергия активная Мощность и энергия реактивная	Активная Реактивная		

Таблица 3. - Метрологические характеристики ИК (активная энергия)

1	1 1	Пределы допускаемой относительной погрешности					
	Диапазон значений	ИК					
					Относительная		
11 1117		Основн	Основная относительная			погрешность ИК в	
Номер ИК	силы тока	погрешность ИК, $(\pm \delta)$, %			рабочих условиях		
		1 // //			эксплуатации, ($\pm \delta$), %		
		cos φ =	cos φ =	cos φ =	cos φ =	cos φ =	cos φ =
		1,0	0,87	0,5	1,0	0,87	0,5
1	2	3	4	5	6	7	8
1-2	1-2 $0.01(0.02)I_{H_1} \le I_1 < 0.05I_{H_1}$		2,4	4,9	2,4	2,7	5,1
(TT 0,5S; TH 0,5; Сч 0,5S)	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	1,2	1,5	3,1	1,7	2,0	3,4
	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,0	1,2	2,3	1,6	1,7	2,7
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,0	1,2	2,3	1,6	1,7	2,7

Таблица 4. - Метрологические характеристики ИК (реактивная энергия)

таолица 4 Метрологические характеристики ик (реактивная энергия)						
		Пределы допускаемой относительной погрешности ИК				
Номер ИК	Диапазон значений силы	Основная от	носительная	Относительная погрешность ИК в		
····	тока	погрешности		_	рабочих условиях	
	2 2 2 3 3	погрешност	71111, (±0), 70	эксплуатации, $(\pm \delta)$, %		
		$\cos \varphi = 0.87$	$\cos \varphi = 0.5$	$\cos \varphi = 0.87$	$\cos \varphi = 0.5$	
		$(\sin \varphi = 0.5)$	$(\sin \varphi =$	$(\sin \varphi = 0.5)$	$(\sin \varphi =$	
		·	0,87)	·	0,87)	
1	2	3	4	5	6	
1-2	$0.02 I_{\rm H_1} \le I_1 < 0.05 I_{\rm H_1}$	5,1	2,5	6,0	3,9	
(TT 0,5S; TH 0,5;	$0.05 I_{H_1} \le I_1 < 0.2 I_{H_1}$	3,4	1,9	4,6	3,5	
Сч 1,0)	$0.2I_{H_1} \le I_1 < I_{H_1}$	2,5	1,5	4,0	3,4	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	2,5	1,5	4,0	3,4	

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
 - 2. Нормальные условия:
- параметры питающей сети: напряжение $(220\pm4,4)$ B; частота $(50\pm0,5)$ Γ ц;
- параметры сети: диапазон напряжения (0.98 1.02)U_н; диапазон силы тока (1.0 1.2)I_н; диапазон коэффициента мощности $\cos \varphi \left(\sin \varphi \right) 0.87(0.5)$; частота (50 ± 0.5) Гц;
- температура окружающего воздуха: TT от минус 40 °C до 50 °C; TH- от минус 40 °C до 50 °C; счетчиков: (23 ± 2) °C;
- относительная влажность воздуха $(70\pm5)\%$;
- атмосферное давление (750±30) мм рт.ст. ((100±4) кПа)
 - 3. Рабочие условия эксплуатации: для TT и TH:

- параметры сети: диапазон первичного напряжения (0.9 1.1)Uн1; диапазон силы первичного тока (0.01(0.02) 1.2)Iн1; коэффициент мощности $\cos \phi$ $(\sin \phi)$ 0.5 1.0(0.6 0.87); частота (50 ± 0.5) Γ ц;
 - температура окружающего воздуха от минус 40 °C до 50 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения (0,9 1,1)Uн2; диапазон силы вторичного тока (0,01 1,2)Iн2; диапазон коэффициента мощности $\cos \phi$ ($\sin \phi$) 0,5-1,0 (0,6 0,87); частота $(50 \pm 0,5)$ Γ ц;
 - магнитная индукция внешнего происхождения 0,5 мТл;
 - температура окружающего воздуха от 10°C до 30°C;
 - относительная влажность воздуха (40-60) %;
 - атмосферное давление (100±4) кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 \pm 11) В; частота (50 \pm 1) Гц;
- температура окружающего воздуха от 10 °C до 30 °C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (100±4) кПа
- 4. Измерительные каналы включают измерительные TT по ГОСТ 7746-2001, измерительные TH по ГОСТ 1983-2001, счетчики электрической энергии по ГОСТ 52323-2005 в режиме измерения активной электрической энергии и по ГОСТ Р 52425-2005 в режиме измерения реактивной электрической энергии;
- 5. Допускается замена УСПД, измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ.

Надежность применяемых в системе компонентов:

- счетчик среднее время наработки на отказ: для счетчиков типа СЭТ-4ТМ.03М не менее 140000 часов; среднее время восстановления работоспособности 168 часов;
- сервер среднее время наработки на отказ не менее 45000 ч, среднее время восстановления работоспособности 1 ч.

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений передается по основному (коммутируемому) и резервному (спутниковому) каналам связи;
 - в журнале событий счетчика фиксируются факты:
 - параметрирование;
 - пропадания напряжения;
 - коррекции времени;
 - несанкционированный доступ.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
- защита на программном уровне информации при хранении, передаче, параметрирование:
 - пароль на счетчике;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 113 суток ,
- сервер результаты измерений, состояние объектов и средств измерений не менее 3.5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии ОАО "АК "Транснефть" в части ООО "Дальнефтепровод" по НПС-40 без резервуарного парка (1-ая пусковая очередь) типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ ОАО "АК "Транснефть" в части ООО "Дальнефтепровод" по НПС-40 без резервуарного парка (1-ая пусковая очередь) представлена в таблице 3.

Таблица 5. Комплектность АИИС КУЭ ОАО "АК "Транснефть" в части ООО "Дальнефтепровод" по НПС-40 без резервуарного парка (1-ая пусковая очередь)

Наименование (обозначение) изделия	Кол. (шт)
Трансформаторы тока ТЛО-10	6
Трансформаторы напряжения ЗНОЛП	6
Счетчики электрической энергии многофункциональные СЭТ- 4TM.03M	2
Устройства сбора и передачи данных «ЭКОМ-3000»	1
Методика поверки	1
Формуляр	1
Инструкция по эксплуатации	1

Поверка

осуществляется по документу МП 50965-12 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии ОАО "АК "Транснефть" в части ООО "Дальнефтепровод" по НПС-40 без резервуарного парка (1-ая пусковая очередь). Методика поверки», утвержденному ФГУП «ВНИИМС» в июле 2012 года.

Перечень основных средств поверки:

Трансформаторы тока – в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;

- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88
 «ГСИ. Трансформаторы напряжения. Методика поверки»
- Счетчик СЭТ-4ТМ.03М в соответствии с документом ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ.
 Методика поверки согласована с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.;
- УСПД «ЭКОМ-3000» в соответствии с документом «ГСИ. Комплекс программнотехнический измерительный ЭКОМ-3000. Методика поверки. ПБКМ.421459.003 МП, утвержденной ГЦИ СИ ФГУП «ВНИИМС» в мае 2009 г.;
- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений 27008-04;
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от -20 до +60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Сведения о методиках (методах) измерений

ГОСТ 22261-94

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО "АК "Транснефть" в части ООО "Дальнефтепровод" по НПС-40 без резервуарного парка (1-ая пусковая очередь)». Свидетельство об аттестации N = 01.00225/206-145-12 от 16.07.2012 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-40 без резервуарного парка (1-ая пусковая очередь)

«Средства измерений электрических и магнитных величин. Общие

	технические условия».				
ГОСТ 1983-2001	«Трансформаторы напряжения. Общие технические условия».				
ГОСТ 7746-2001	«Трансформаторы тока. Общие технические условия».				
ГОСТ Р 52323-2005	«Аппаратура для измерения электрической энергии переменного тока.				
	Частные требования. Часть 22. Статические счетчики активной энергии				
	классов точности 0,2S и 0,5S».				

ГОСТ Р 52425-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Заявитель

Закрытое акционерное общество «ЭнергоСтрой» (ЗАО «ЭнергоСтрой») Юридический адрес: 620085, г. Екатеринбург, ул. Монтерская, 3 литер 2 — оф.1 тел./факс: (343) 287-07-50

Изготовитель

Общество с ограниченной ответственностью «Дальнефтепровод» (ООО «Дальнефтепровод») 680030, Россия, Хабаровский край, г. Хабаровск, ул. Ленина, д. 57, оф. 324 тел:8(4212) 22-30-40

Испытатель

Государственный центр испытаний средств измерений ФГУП «ВНИИМС» (ГЦИ СИ ФГУП «ВНИИМС») Юридический адрес: 119361, г. Москва ул. Озерная, д. 46

тел./факс: 8(495) 437-55-77

Регистрационный номер аттестата аккредитации государственного центра испытаний средств измерений № 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф. В. Бул	ЫГИН
М.п.	«	<u></u> >>		_2012 г.