ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1

Назначение средства измерений

Настоящее описание типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1 является обязательным дополнением к описанию типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь), свидетельство об утверждении типа RU.E.34.004.А № 47911, регистрационный № 51025-12 от 31.08.2012 г., и включает в себя описание дополнительных измерительных каналов № 3, 4, соответствующих присоединениям ЗРУ 10 кВ, ПСП Ввод № 1 яч.1; ЗРУ 10 кВ, ПСП Ввод № 2 яч. 41.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1 (далее — АИИС КУЭ) предназначена для измерений активной и реактивной энергии и мощности, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ реализована в объеме первой пусковой очереди и представляет собой многофункциональную двухуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

1-й уровень включает в себя измерительные трансформаторы тока (далее - ТТ) класса точности 0,5S по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее - ТН) класса точности 0,5 по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии СЭТ-4ТМ.03М класса точности 0,5S по ГОСТ Р 52323-2005 в части активной электроэнергии и 1,0 по ГОСТ Р 52425-2005 в части реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Устройство сбора и передачи данных (далее - УСПД) «ЭКОМ-3000», установленное на 1-ом уровне работает в «прозрачном» режиме при обращении сервера ИВК к счетчикам электроэнергии и выполняет функции шлюза-концентратора.

2-й уровень – информационно-вычислительный комплекс (далее - ИВК). Данный уровень включает в себя «Центр сбора и обработки данных (далее - ЦСОД) АИИС КУЭ ОАО «АК «Транснефть» (номер в Государственном реестре средств измерений 38424-08) и автоматизированные рабочие места (АРМы) диспетчеров (операторов АИИС КУЭ).

Уровень ИВК включает в себя:

- серверное оборудование, обеспечивающее сбор, обработку, хранение данных и формирование отчетных документов;
- оборудование приема-передачи информации, обеспечивающие приём и выдачу информации;
- вспомогательное оборудование, обеспечивающее бесперебойное питание основного оборудования, размещение, защиту и коммутацию оборудования;
- оборудование АРМ обслуживающего персонала;
- программное обеспечение (далее ПО) «Converge»;
- устройство синхронизации системного времени.

Измерительные каналы (далее – ИК) состоят из двух уровней АИИС КУЭ.

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности. Измерительная информация со счетчика электроэнергии передается без учета коэффициентов трансформации трансформаторов тока и напряжения. Счетчик электроэнергии на выходе формирует результаты измерений:

- активной и реактивной электрической энергии, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.;
- среднюю на интервале времени 30 мин активную (реактивную) электрическую мощность.

Данные со счетчиков поступают на уровень ИВК, где выполняется обработка измерительной информации, в частности, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, формирование и хранение поступающей информации, оформление справочных и отчетных документов, отображение информации на мониторах АРМ и передача данных в организации — участники оптового рынка электрической энергии и мощности через каналы связи.

АИИС КУЭ оснащена системой обеспечения единого времени (далее – СОЕВ). СОЕВ предусматривает поддержание единого календарного времени на всех уровнях системы, погрешность часов компонентов системы не превышает ± 5 с. Задача синхронизации времени решается использованием службы единого координированного времени (или всемирного скоординированного времени) UTC. Для его трансляции используется спутниковая система глобального позиционирования ГЛОНАСС/GPS. Синхронизация времени АИИС КУЭ с единым координированным временем обеспечивается двумя серверами синхронизации времени ССВ-1Г (номер в Государственном реестре средств измерений 39485-08), входящими в состав ЦСОД. ССВ-1Г непрерывно обрабатывает данные, поступающие от антенного блока и содержащие точное время UTC спутниковой навигационной системы. Информация о точном времени распространяется устройством в сети TCP/IP согласно протоколу NTP (Network Time Protocol). CCB-1Г формирует сетевые пакеты, содержащие оцифрованную метку всемирного координированного времени, полученного по сигналам спутниковой навигационной системы ГЛОНАСС, с учетом задержки на прием пакета и выдачу ответного отклика. Сервер синхронизации времени обеспечивает обновление данных на сервере ИВК постоянно и Сервер непрерывно. приложений «Converge» автоматически передает сформированные метки времени с периодичностью раз в сутки. При расхождении времени в сервере ИВК и счетчике на величину ±1 с происходит автоматическая коррекция времени в счетчике. Резервный сервер используется при выходе из строя основного сервера.

Минимальная скорость передачи информации в АИИС КУЭ по выделенным каналам корпоративной сети составляет 9600 бит/с.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Программное обеспечение

Уровень ИВК содержит ПО «Converge», с помощью которого решаются задачи автоматического накопления, обработки, хранения и отображения измерительной информации.

Таблица 1 - Сведения о программном обеспечении.

Наименование ПО	Идентифика- ционное наименование ПО	Название файлов	Номер версии (идентифика- ционный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгорит м цифрово- го иденти- фикатора ПО
«Converge»	«Landis+Gyr Converge 3.5.1»	Converge.msi	3.5.001.268 Rev. 64500	B1E67B8256DE3F55 46A96054A2062A1E	
«ЭнергоМонитор»	«Energy Monitor»	Web Monitor Setup.msi	1.8.0.0	1E6CE427DAC589A FE884AB490632BC4 B	
«Генератор XML- отчетов»	«XML Report Generator»	XML Service Setup.msi	-	9486BC5FC4BC0D32 6752E133D125F13D	MD5
		XML Client Setup.msi	-	37F58D0D9FB444D0 85405EB4A16E7A84	WIDS
«ЭМ Администратор»	«EM Admin»	EM Admin Setup.msi	-	621E4F49FB74E52F9 FFADA2A07323FBD	
«Ручной импорт в Converge»	«Manual Converge Import»	Manual Converge Import.msi	-	ACA7D544FAD3B16 6916B16BB99359891	

- Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3, 4 нормированы с учетом ПО;
- Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Состав 1-го уровня АИИС КУЭ приведен в таблице 2.

Таблица 2 - Состав 1-го уровня АИИС КУЭ

		Состав 1-го уровня АИИС КУЭ						
Номер ИК	Наименование объекта учета, диспетчерское наименование		Вид СИ, класс точности, коэффициент трансформации, № Госреестра СИ	Обозначение, тип	Ктт -Ктн -Ксч	УСПД	Наименование измеряемой величины	Вид энергии
	присоединения		KT = 0.5S	А ТЛО-10			Мощность и	
		TT	$K_{TT} = 400/5$	В ТЛО-10			энергия	
			Госреестр № 25433-11	С ТЛО-10			активная	
	3РУ-10 кВ,		KT = 0.5	А ЗНОЛП			Мощность и	Активная
3	ПСП Ввод № 1	TH	K тн = $10000:\sqrt{3}/100:\sqrt{3}$	В ЗНОЛП	0008		энергия	
	Яч. 1		Госреестр № 23544-07	С ЗНОЛП			реактивная	Реактивная
		Счетчик	КТ = 0,5S/1,0 Ксч = 1 Госреестр № 36697-08	СЭТ-4ТМ.03М.01		ЭКОМ-3000 Госреестр №		
			KT = 0.5S	А ТЛО-10		17049-09	Мощность и	
		TT	$K_{TT} = 400/5$	В ТЛО-10		17047 07	энергия	
			Госреестр № 25433-11	С ТЛО-10			активная	
	3РУ-10 кВ,		KT = 0.5	А ЗНОЛП			Мощность и	Активная
4	ПСП Ввод № 2	TH	K тн = $10000:\sqrt{3}/100:\sqrt{3}$	В ЗНОЛП	0008		энергия	_
	Яч. 41		Госрестр № 23544-07	С ЗНОЛП	~~		реактивная	Реактивная
		~	KT = 0.5S/1.0	COT IT I CONT				
		Счетчик	Ксч = 1 Госреестр № 36697-08	CЭT-4TM.03M.01				
			1 0cpccc1p 312 30037-08					

Таблица 3 - Метрологические характеристики ИК (акти	ивная энергия)

	Диапазон значений силы тока	Пределы допускаемой относительной погрешности ИК						
Номер ИК		основная относительная погрешность ИК, $(\pm d)$, %			относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm d)$, %			
		cos φ=1,0	cos φ=0,87	cos φ=0,5	cos φ=1,0	cos φ=0,87	cos φ=0,5	
3 - 4	$0.01(0.02)I_{H_1} \le I_1 < 0.05I_{H_1}$	2,1	2,4	4,9	2,4	2,7	5,1	
(TT 0,5S;	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	1,2	1,5	3,1	1,7	2,0	3,4	
ТН 0,5; Сч	$0,2I_{H_1} \le I_1 < I_{H_1}$	1,0	1,2	2,3	1,6	1,7	2,7	
0,5S)	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	1,0	1,2	2,3	1,6	1,7	2,7	

Таблица 4 - Метрологические характеристики ИК (реактивная энергия)

1	Пределы допускаемой относительной погрешност				
Номер ИК	Диапазон значений силы тока	основная отн	осительная	относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm d)$, %	
		$\cos \varphi = 0.87$ $(\sin \varphi = 0.5)$	$\cos \varphi = 0.5$ $(\sin \varphi = 0.87)$	$\cos \varphi = 0.87$ $(\sin \varphi = 0.5)$	$\cos \varphi = 0.5$ $(\sin \varphi = 0.87)$
3 - 4	$0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$	5,1	2,5	6,0	3,9
	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	3,4	1,9	4,6	3,5
(TT 0,5S;	$0.2I_{H_1} \le I_1 < I_{H_1}$	2,5	1,5	4,0	3,4
ТН 0,5; Сч 1,0)	$I_{H_1} \le I_1 \le 1, 2I_{H_1}$	2,5	1,5	4,0	3,4

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
 - 2. Нормальные условия:
- параметры питающей сети: напряжение $(220\pm4,4)$ B; частота $(50\pm0,5)$ Γ ц;
- параметры сети: диапазон напряжения (0.98 1.02)U_н; диапазон силы тока (1.0 1.2)I_н; диапазон коэффициента мощности $\cos \phi$ ($\sin \phi$) 0.87(0.5); частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха: TT от минус 40 °C до 50 °C; TH- от минус 40 °C до 50 °C; счетчиков: (23 ± 2) °C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (750±30) мм рт.ст. ((100±4) кПа)
 - 3. Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения (0.9 1.1)Uн1; диапазон силы первичного тока (0.01(0.02) 1.2)Iн1; коэффициент мощности $\cos \phi$ $(\sin \phi)$ 0.5 1.0(0.6 0.87); частота (50 ± 0.5) Γ Ц;
 - температура окружающего воздуха от минус 40 °C до 50 °C;
 - относительная влажность воздуха (70±5) %;
 - атмосферное давление (100±4) кПа.

Для электросчетчиков:

— параметры сети: диапазон вторичного напряжения (0.9 - 1.1)Uн2; диапазон силы вторичного тока (0.01 - 1.2)Iн2; диапазон коэффициента мощности $\cos \phi (\sin \phi) 0.5-1.0 (0.6 - 0.87)$; частота (50 ± 0.5) Γ ц;

- магнитная индукция внешнего происхождения 0,5 мТл;
- температура окружающего воздуха от 10°C до 30°C;
- относительная влажность воздуха (40-60) %;
- атмосферное давление (100±4) кПа.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 11) B; частота (50 ± 1) Γ ц;
- температура окружающего воздуха от 10 °C до 30 °C;
- относительная влажность воздуха (70±5) %;
- атмосферное давление (100±4) кПа
- 4. Допускается замена УСПД, измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Замена оформляется актом в установленном порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ.

Надежность применяемых в системе компонентов:

- счетчик среднее время наработки на отказ: для счетчиков типа СЭТ-4ТМ.03М не менее 140000 часов; среднее время восстановления работоспособности 168 часов;
- сервер среднее время наработки на отказ не менее 45000 ч, среднее время восстановления работоспособности 1 ч.

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений передается по основному (коммутируемому) и резервному (спутниковому) каналам связи;
 - в журнале событий счетчика фиксируются факты:
 - параметрирование;
 - пропадания напряжения;
 - коррекции времени;
 - несанкционированный доступ.

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательной коробки;
- защита на программном уровне информации при хранении, передаче, параметрирование:
 - пароль на счетчике;
- пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о состоянии средств измерений (функция автоматизирована);
- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик – тридцатиминутный профиль нагрузки в двух направлениях не менее 113 суток ,

- сервер – результаты измерений, состояние объектов и средств измерений – не менее 3.5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1 типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1 представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1

Наименование (обозначение) изделия	Кол. (шт)
Трансформаторы тока ТЛО-10	6
Трансформаторы напряжения ЗНОЛП	6
Счетчики электрической энергии многофункциональные СЭТ-4TM.03M.01	2
Устройства сбора и передачи данных «ЭКОМ-3000»	1
Методика поверки	1
Формуляр	1
Инструкция по эксплуатации	1

Поверка

осуществляется по документу МП 51025-13 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1. Методика поверки», утвержденному ФГУП «ВНИИМС» в июне 2013 года.

Перечень основных средств поверки:

- трансформаторов тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ.
 Трансформаторы напряжения. Методика поверки»;
- счетчиков СЭТ-4ТМ.03М в соответствии с документом ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ. Методика поверки согласована с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 г.;
- для УСПД «ЭКОМ-3000» в соответствии с документом «ГСИ. Комплекс программно-технический измерительный ЭКОМ-3000. Методика поверки. ПБКМ.421459.003 МП, утвержденным ГЦИ СИ ФГУП «ВНИИМС» в мае 2009 г.;

- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- термогигрометр CENTER (мод.314): диапазон измерений температуры от минус 20 до плюс 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1». Свидетельство об аттестации № 01.00225/206-330-13 от 19.08.2013 г.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО «АК «Транснефть» в части ООО «Дальнефтепровод» по НПС-34 с резервуарным парком (1-ая пусковая очередь) с Изменением № 1

ГОСТ 22261-94	«Средства измерений электрических и магнитных величин. Общие			
	технические условия».			
ГОСТ 1983-2001	«Трансформаторы напряжения. Общие технические условия».			
ГОСТ 7746-2001	«Трансформаторы тока. Общие технические условия».			
ГОСТ Р 52323-2005	«Аппаратура для измерения электрической энергии переменного тока.			
	Частные требования. Часть 22. Статические счетчики активной энергии			
	классов точности 0,2S и 0,5S».			
ΓΟCT P 52425-2005	«Аппаратура для измерения электрической энергии переменного тока.			
	Частные требования. Часть 23. Статические счетчики реактивной			
	энергии».			
ГОСТ 34.601-90	«Информационная технология. Комплекс стандартов на автоматизи-			
	рованные системы. Автоматизированные системы. Стадии создания».			
ГОСТ Р 8.596-2002	«ГСИ. Метрологическое обеспечение измерительных систем. Основные			
	положения».			

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Дальнефтепровод» (ООО «Дальнефтепровод») 680030, Россия, Хабаровский край, г. Хабаровск, ул. Ленина, д. 57, оф. 324 тел:8(4212) 22-30-40

Заявитель

Закрытое акционерное общество «ЭнергоСтрой» (ЗАО «ЭнергоСтрой») Юридический адрес: 620085, г. Екатеринбург, ул. Монтерская, 3 литер 2 – оф.1 тел./факс: (343) 287-07-50

Испытательный центр

Испытательный центр ФГУП «ВНИИМС» (ИЦ ФГУП «ВНИИМС») Юридический адрес: 119361, г. Москва ул. Озерная, д. 46 тел./факс: 8(495) 437-55-77

Регистрационный номер аттестата аккредитации № 30004-13 от 26.07.2013 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин М.п. «___»_____2013 г.