

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.007.A № 48030

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Блок КПН-01Р

ЗАВОДСКОЙ НОМЕР 001-2012

ИЗГОТОВИТЕЛЬ ЗАО "Автоматика-Э", г. Омск

Серия СИ

РЕГИСТРАЦИОННЫЙ № 51128-12

ДОКУМЕНТ НА ПОВЕРКУ **АВБП.426475.031РЭ1 приложение А**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 11 сентября 2012 г. № 740

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства		Ф.В.Булыгин
	ии	2012 г.
Cenus CV		No 006532

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Блок КПН-01Р

Назначение средства измерений

Блок КПН-01Р (далее блок) предназначен для непрерывного измерения фазового сдвига между опорным синусоидальным напряжением для питания обмоток синхронизации сельсин-датчиков и синусоидальным напряжением, поступающим с обмоток возбуждения, пропорционального перемещению кинематически связанных с этими сельсин-датчиками штанг исполнительных механизмов рабочих органов (РО) компенсирующих стержней (КС) и аварийной защиты (АЗ).

Блок – применяется в автоматизированных системах управления и защиты ядерных реакторов.

Описание средства измерений

Принцип действия блока основан на непрерывном измерении и преобразовании фазового сдвига между опорным синусоидальным напряжением для питания обмоток синхронизации сельсин-датчиков и синусоидальным напряжением, поступающим с обмоток возбуждения сельсин датчиков, пропорционального перемещению кинематически связанных с этими сельсин-датчиками штанг исполнительных механизмов (ИМ) системы управления и защиты (СУЗ), в стандартные аналоговые сигналы силы постоянного тока в диапазоне от 0 до 5 мА и напряжения постоянного тока, в диапазоне от 0 до 10 В.

Блок обеспечивает:

- а) контроль положения штанг исполнительных механизмов РО КС и АЗ по пяти измерительным каналам;
- б) адаптацию к исходным параметрам сельсин-датчиков типа БД-1404 в составе ИМ СУЗ за счет оперативной подстройки начального сдвига фаз между опорным сигналом и сигналом от обмотки возбуждения, характеризующего «жесткий упор»;
 - в) питание обмоток синхронизации пяти сельсин-датчиков трехфазным напряжением переменного тока;
- г) переключение обмоток синхронизации сельсин-датчиков любой группы на резервный источник трехфазного напряжения питания сельсин-датчиков при неисправности рабочего источника питания;
- д) автоматический контроль исправности блока, формирование и передачу во внешние адреса дискретного сигнала "Неиспр." в следующих случаях:
 - 1) неисправность любого из пяти каналов преобразования фазового сдвига, включая линию связи, обеспечивающую съем входных сигналов с сельсин-датчиков;
 - 2) отсутствие любого фазного напряжения на выходах рабочего или резервного источника питания сельсин-датчиков;
 - 3) отсутствие любого из напряжений питания;
 - 4) нарушение комплектности блока КПН-01Р.

Блок КПН-01Р выполнен на базе блок-каркаса К2КБ7-10 УТК. В блок по направляющим вставлены субблоки.

В состав блока входят:

- субблок НИП-02Р - один; - субблок КПН-1-01Р - пять; - субблок КПН-2-01Р - один; - субблока КПН-3-01Р - два.

На передней панели блока расположены индикаторы исправности; на задних панелях - расположены клеммы C (общая шина), CB (экранирующая шина), M (корпусная шина) и соединители:

- ПИТ.С-Д – для подключения обмоток синхронизации сельсин-датчиков;

- БЩУ, ИВС, РЩУ, САМОПИСЕЦ для подключения внешних устройств;
- «1 ВХ. КАНАЛОВ» для подключения обмоток возбуждения сельсин-датчиков;
- «2 ВХ. КАНАЛОВ» для подачи сигналов при автономной проверке и настройке каналов преобразования фазового сдвига устройства.

Одноместные и двухместные субблоки выполнены на печатных платах размером 235×220 мм с передней панелью. На передних панелях субблоков установлены элементы индикации, контрольные гнезда и элементы регулировки.

В зоне установки соединителей предусмотрены специальные ключевые планки, однозначно определяющие место субблока в блоке. Субблоки подключаются к монтажной плоскости блока посредством соединителей типа ГРПМШ1.

Субблок питания НИП-02Р выполнен на базе частичного каркаса К1Ч4-45. На передней панели субблока, расположенной в одной плоскости с передней панелью блока КПН, установлены:

- тумблеры «СЕТЬ 1», «СЕТЬ 2» для включения напряжения питания 220 В;
- индикаторы «СЕТЬ 1», «СЕТЬ 2», для индикации напряжения питания 220 В;
- индикаторы «+15 B», «-15 B», «9 B» для индикации напряжений 15 B, минус 15 B и 9 B соответственно;
 - держатели плавких вставок «3 А».

На задней панели субблока НИП-02Р установлены соединители:

- «СЕТЬ 1», «СЕТЬ 2» для подключения двух сетей питания;
- « ± 15 В» резервный выход питания ± 15 В;
- ВЫХОД для подключения к блоку КПН.

Пример записи блока при его заказе и в документации продукции, в которой он применяется: «Блок КПН ТУ 4362-005-23767649-2011, исполнение – 01Р.»

Общий вид блока, места пломбирования и нанесения знака утверждения представлены на рисунках 1 и 2 соответственно

Рисунок 1 – Внешний вид блока КПН-01Р

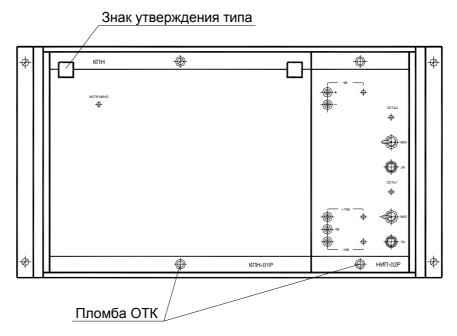


Рисунок 2. Места пломбирования и нанесения знака утверждения типа

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в таблице 1. Таблица 1

Наименование параметра	Значение
Диапазон измерения фазового сдвига между опорным сигналом и сигналами,	От 0 до 225
поступающими от сельсин-датчиков, градус	
Диапазон силы выходного постоянного тока (Rн≤ 200 Ом), мА	От 0 до 5
Диапазон выходного напряжения постоянного тока, при сопротивлении на-	От 0 до 10
грузки, Rн≥2 кОм, В	
Диапазон компенсации начального фазового сдвига между опорным сигна-	От 0,4 до 359,6
лом и сигналами, поступающими от сельсин-датчиков, градус	От 0,4 до 339,0
Шаг компенсации начального сдвига между опорным сигналом и сигналами,	
поступающими от сельсин-датчиков, мкс, не более	21
Параметры трехфазного напряжения переменного тока для питания сельсин-	
датчиков:	
- напряжение (действующее значение), В	$3,500\pm0,035$
- частота, Гц	$50,0\pm0,5$
-угол сдвига фаз, градус	120±0,5
Пределы допускаемой основной относительной погрешности задания угла	
сдвига фаз, трехфазного напряжения переменного тока для питания сельсин-	±0,4
датчиков при нагрузке эквивалентной обмоткам синхронизации пяти сель-	±0, 4
син-датчиков, %	
Пределы допускаемой основной приведенной погрешности преобразования	
фазового сдвига в стандартные токовые сигналы и сигналы напряжения по-	±0,4
стоянного тока, %	
Пределы допускаемой основной приведенной погрешности преобразования	
фазового сдвига в стандартные токовые сигналы и сигналы напряжения по-	
стоянного тока с учетом компенсации начального сдвига фаз, %	±0,5
Пределы допускаемой дополнительной приведенной погрешности измерения	
преобразования фазового сдвига в стандартные токовые сигналы и сигналы	±0,3
напряжения постоянного тока, при изменении напряжения питания, воздей-	±0,3
ствии синусоидальной вибрации и после 24 часов	

Наименование параметра	Значение	
Пределы дополнительной основной относительной погрешности задания уг-		
ла сдвига фаз, трехфазного напряжения переменного тока для питания сель-	±0,3	
син-датчиков при изменении напряжения питания, воздействии синусои-		
дальной вибрации и после 24 часов непрерывной работы, %		
Диапазон рабочих температур, °С	от 10 до 50	
Максимальная относительная влажность окружающего воздуха при 35 °C, %, не более	80	
Пределы допускаемой дополнительной приведенной погрешности преобразования фазового сдвига в стандартные токовые сигналы и сигналы напряжения постоянного тока при изменении температуры окружающего воздуха, %	±0,3 на каждые 5°C	
Пределы допускаемой дополнительной относительной погрешности задания угла сдвига фаз, трехфазного напряжения переменного тока для питания сельсин-датчиков при изменении температуры окружающего воздуха, %	±0,3 на каждые 5°C	
Время установления рабочего режима, мин, не более	30	
Электропитание от двух независимых сетей напряжения переменного тока для потребителей особой группы первой группы категории надежности, частотой (50±1) Гц, В	от 187 до 242	
Средний срок службы (Тсл), лет, не менее	10	
Средняя наработка на отказ (То) блока по функции преобразования фазового сдвига в стандартные токовые сигналы и сигналы напряжения постоянного тока для одного канала, час, не менее	170000	
Потребляемая мощность, В'А, не более	95	
Габаритные размеры, мм, не более	520x278x480	
Масса прибора без упаковки, кг, не более	27	

Знак утверждения типа

Знак утверждения типа средства измерений наносится на лицевую панель блока КПН методом - шелкографии, на титульные листы паспорта и руководства по эксплуатации - печатным способом.

Комплектность средства измерений

Комплект поставки блока приведен в таблице 2.

Таблица 2

Обозначение	Наименование и условное	Кол.	Примечание
	обозначение		
АВБП.426475.031	Блок КПН	1шт.	
АВБП.426475.031ВЭ	Ведомость эксплутационных	1	Комплект поставки блока - в со-
	документов	компл.	ответствии с ведомостью экс-
			плутационных документов.

Поверка

осуществляется в соответствии с документом «Блок КПН Руководство по эксплуатации ПРИЛО-ЖЕНИЕ А Методика поверки АВБП.426475.031РЭ1», утвержденному ГЦИ СИ СНИИМ 23 апреля $2012~\Gamma$.

Перечень основного оборудования, необходимого для поверки, приведен в таблице 3.

Таблина 3

Наименование средства измерения, (вспомогательного	Обозначение	Кол-
оборудования)	ГОСТ, ТУ	во
1 Вольтметр универсальный В7-77	ТУ РБ 100039847.033-2002	1
2 Вольтметр универсальный В7-72	ТУ ВҮ 100039847.032-2003	1
3 Частотомер электронно-счетный ЧЗ-81	ТУ 4318-038-00158818-99	1
4 Измеритель разности фаз Ф2-34	Хв2.721.057ТУ	1
5 Источник питания Б5-71/1м	ТУ РБ 100694318.001-2001	1

Наименование средства измерения, (вспомогательного	Обозначение	Кол-
оборудования)	ГОСТ, ТУ	во
6 Мегаомметр ЭС0210/1-Г	Ба2.722.057ТУ	1
7 Универсальная пробойная установка УПУ-10	П12.763.000ТУ	1
8 Стенд вибрационный электродинамический типа ВЭДС-	ТУ 25-06.605-76	1
400 A		
9 Климатическая термокамера типа КТК 800	Фирма ILKA, Германия	1
10 Лабораторный автотрансформатор ЛАТР-1М	ТУ16-517.261-79	1
11 Стенд КПН-01Р	АВБП.468211.029ТУ	1
12 Фильтр сетевой помехоподавляющий ФСП-1Ф-1А	КЛУФ.431149.006ТУ	1

Примечание - Допускается применение другого оборудования, обеспечивающего требуемую точность и пределы измерения

Сведения о методиках (методах) измерений

Метод измерений приведен в документе Блок КПН Руководство по эксплуатации АВБП.426475.031РЭ

Нормативные и технические документы, устанавливающие требования к блоку КПН

- 1. Блок КПН Технические условия ТУ 4362-005-23767649-2011
- 2. ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.
- 3. ГОСТ 22261-94 Средства измерений электрических и магнитных величин Общие технические условия
- 4. ГОСТ 26.011-80 Средства измерений и автоматизации. Сигналы тока и напряжения электрические входные и выходные
- 5. ГОСТ 8.508-84 ГСИ Метрологические характеристики средств измерений и точностные характеристики средств автоматизации ГСП. Общие методы оценки и контроля
- 6 Блок КПН Руководство по эксплуатации ПРИЛОЖЕНИЕ А Методика поверки АВБП.426475.031РЭ1

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

ЗАО «Автоматика-Э»

Адрес: 644007, г. Омск-7, ул. Чернышевского, д. 2, корп. 3 Телефон (381-2) 23-66-77, 24-60-07, Тел/факс (381-2) 23-67-13.

Испытательный центр

ГЦИ СИ ФГУП «Сибирский государственный научно-исследовательский институт метрологии», регистрационный номер 30007-09

Адрес: 630004, г. Новосибирск, пр. Димитрова, 4

Тел.8(383) 210-16-18

e-mail: evgrafov@sniim.nsk.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В.Булыгин

Μπ			2012 г
IVI TI	«	>>	2012 г