

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.27.004.A № 48067

Срок действия до 13 сентября 2017 г.

НА<mark>ИМЕНО</mark>ВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Приборы для поверки квадрантов ППК

ИЗГОТОВИТЕЛЬ
ООО ИМЦ "Микро", г. Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 51161-12

ДОКУМЕНТ НА ПОВЕРКУ МП 51161-12

интервал между поверками 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 13 сентября 2012 г. № 751

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.В.Булыгин
Федерального агентства	
	11-27
	 2012 г.

№ 006603

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Приборы для поверки квадрантов ППК

Назначение средства измерений

Приборы для поверки квадрантов ППК (далее - приборы) предназначены для поверки квадрантов оптических КО-10, КО-30, КО-60, КО-60М и клинометров (инклинометров) в измерительных лабораториях.

Описание средства измерений

Основными частями приборов для поверки квадрантов ППК являются основание с регулируемыми опорами и прецизионное поворотное устройство, соединенное с оптоэлектронным круговым преобразователем. Шпиндель поворотного устройства вращается в прецизионных подшипниках. На правом конце шпинделя крепится столик для установки поверяемого квадранта. Вращение шпинделя осуществляется с помощью рукояток грубой и тонкой подачи.

Принцип работы прибора заключается в следующем: шпиндель поворотного устройства устанавливается в нулевое положение по показаниям кругового преобразователя, после чего на столик устанавливается поверяемый квадрант, шкала которого выставлена точно в нулевое положение, а уровень квадранта находится в среднем положении. Затем, вращением наружного лимба и наводящего винта квадранта, по оптической шкале квадранта выставляется угол α_i , соответствующий поверяемой точке. После этого вращением рукоятки грубой и тонкой подачи прибора столик с установленным квадрантом тоже поворачивается на угол α_i , пока пузырек основного уровня квадранта не вернется среднее положение. Угол поворота шпинделя, к которому прикреплен столик с установленным на нем квадрантом, отсчитывается оптоэлектронным круговым преобразователем, который непосредственно подключен к компьютеру для регистрации углов поворота шпинделя. Таким образом, погрешность квадранта определяется как разность показаний квадранта и прибора.

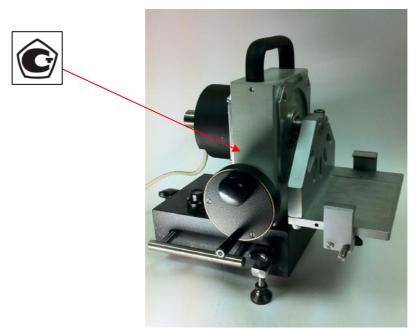


Рисунок 1 – Общий вид прибора для поверки квадрантов ППК и место нанесения знака утверждения типа

Программное обеспечение

Приборы для поверки квадрантов ППК имеют в своем составе ПО КВАДРАНТ, используемое для получения и обработки данных с оптоэлектронного кругового преобразователя. ПО функционирует на базе персонального компьютера с операционной системой Windows XP или Windows 7.

Наименование	Идентификационное	Номер версии	Цифровой иденти-	Алгоритм вы-
программного	наименование про-	(идентифика-	фикатор про-	числения циф-
обеспечения	граммного обеспе-	ционный но-	граммного обеспе-	рового иденти-
	чения	мер) про-	чения (контроль-	фикатора про-
		граммного	ная сумма испол-	граммного
		обеспечения	няемого кода	обеспечения
КВАДРАНТ	КВАДРАНТ.exe	v. 1.0	2ecaaefe8639f68ced 8af8333674aa5d	MD5

Программное обеспечение и его окружение являются неизменными, средства для программирования или изменения метрологически значимых функций отсутствуют.

Уровень защиты программного обеспечения оценивается как «С» по МИ 3286-2010

Метрологические и технические характеристики

Наименование параметра	Значение параметра
Диапазон измерений углов, °	от 0 до 360
Дискретность отсчета, "	1
Пределы допускаемой абсолютной погрешности прибора, "	±3
Вариация показаний, "	2
Габаритные размеры прибора, не более, мм	
-ширина	350
-глубина	250
-высота	280
Масса прибора, не более, кг	20
Условия эксплуатации:	
Диапазон рабочих температур,°С	20±2
Относительная влажность воздуха, %	не более 80 без конден-
•	сата

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист Руководства по эксплуатации и на корпус прибора.

Комплектность средства измерений

Наименование	Количество
	Количество
1) Прибор для поверки квадрантов ППК	1 шт.
2) Ящик укладочный	1 шт.
3) Приспособление для установки меры плоского угла, приме-	1 шт.
няемой для поверки прибора	
4) Персональный компьютер	1 шт.
5) Программное обеспечение на СD-диске	1 шт.
6) Принтер (по заказу потребителя)	1 шт.
7) Руководство по эксплуатации	1 экз.
8) Методика поверки	1 экз.

Поверка

осуществляется в соответствии с документом МП 51161-12 «Приборы для поверки квадрантов ППК. Методика поверки», разработанным ООО ИМЦ «Микро» и утвержденным ГЦИ СИ ФГУП «ВНИИМС» в июне 2012 года.

Основное поверочное оборудование: мера плоского угла призматическая, тип 4, 12 граней, разряд 2; автоколлиматор АКУ-0,2.

Сведения о методиках (методах) измерений

Методики измерений изложены в документе «Приборы для поверки квадрантов ППК. Руководство по эксплуатации. ППК000РЭ» в разделе «Применение прибора».

Нормативные документы, устанавливающие требования приборам для поверки квадрантов ППК

8.016-81 ГСИ. Государственная система обеспечения единства измерений. Государственный первичный эталон и государственная поверочная схема для средств измерений плоского угла

Технические условия ООО ИМЦ «Микро» ТУ 3943-005-25892761-2011

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ и (или) оказание услуг по обеспечению единства измерений

Изготовитель

ООО ИМЦ «Микро»

195251, г. Санкт-Петербург, Политехническая ул., 29,

www.imcmikro.ru, e-mail: imcmikro@mail.ru Тел. (812)981-49-65, Тел./Факс (812)591-66-61

Испытательный центр

Государственный центр испытаний средств измерений (ГЦИ СИ) ФГУП «ВНИИМС», аттестат аккредитации Госреестр № 30004-08 от 27.06.2008 г.

Адрес: 119361, г.Москва, ул.Озерная, д.46 Тел./факс: (495) 437-55-77 / 437-56-66 e-mail: office@vniims.ru, www.vniims.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

> ____» ____ 2012 г. м.п.

Ф.В.Булыгин