

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.31.076.A № 48310

Срок действия до 02 октября 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ **Датчики горючих и токсичных газов интеллектуальные стационарные ИТС2**

ИЗГОТОВИТЕЛЬ

OOO "Научно-производственный центр автоматизации техники безопасности" (ООО "НПЦ АТБ"), г. Москва

РЕГИСТРАЦИОННЫЙ № 51279-12

ДОКУМЕНТ НА ПОВЕРКУ АТРВ.413419.002 РЭ, приложение А

интервал между поверками 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **02 октября 2012 г.** № **824**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства	Ф.В.Булыгин
Федерального агентетва	
	"" 2012 г.

Серия СИ № 006850

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Датчики горючих и токсичных газов интеллектуальные стационарные ИТС2

Назначение средства измерений

Датчики горючих и токсичных газов интеллектуальные стационарные ИТС2 (в дальнейшем - датчики) предназначены в зависимости от исполнения для использования в составе газоаналитической аппаратуры или информационно-измерительных систем аэрогазового контроля атмосферы шахт, промышленных объектов:

- для непрерывного измерения концентраций метана;
- для непрерывного определения степени взрывоопасности контролируемой атмосферы, в которой могут содержаться горючие газы и пары нефтепродуктов (в том числе бензина). В качестве типичных представителей семейства химически подобных газов, измеряемых датчиком, выбраны метан, пропан, бутан и гексан;
- для непрерывного определения степени взрывоопасности контролируемой атмосферы, в которой может содержаться метано-водородная смесь;
- для непрерывного измерения концентрации оксида углерода (CO), диоксида углерода (CO₂), кислорода (O₂), сероводорода (H₂S), оксида азота (NO), диоксида азота (NO₂), водорода (H₂).

Датчики предназначены для выполнения следующих функций:

- непрерывное измерение концентрации измеряемого компонента, преобразование измеренных значений в зависимости от исполнения в цифровой код с передачей по интерфейсу RS-485 или аналоговый сигнал и цифровая индикация на графическом дисплее;
 - световая сигнализация превышения установленных пороговых значений концентрации;
 - передача информации о превышении пороговых значений концентрации;
 - передача информации о состоянии датчика.

Описание средства измерений

Датчики являются стационарными одноблочными приборами.

Датчики выпускаются в исполнениях согласно таблице 1.

Датчики относятся к взрывозащищенному электрооборудованию с маркировкой по ГОСТ Р 52350.0-2005 (МЭК 60079-0:2004), указанной в зависимости от исполнения в таблице 1.

Таблица 1 – Исполнения датчиков ИТС2

Наименование	Измеряемый компонент, единица измерения	Диапазон измерения	Условия эксплуатации	Выходной сигнал	Маркировка взрывозащи- ты
1	2	3	4	5	6
ИТС2-СН4-01		от 0 до 2,5 и от 5 до 100	от минус 20 до плюс 40 °C от 60 до 119,7 кПа	wydnono <u>*</u> DC 105	PO ExiasI X
ИТС2-СН4-02		от 0 до 2,5	от минус 40 до плюс 55 °C от 87,8 до 119,7 кПа	цифровой, RS-485	PO ExiasI X / 1ExiadIIB+H ₂ T4X
ИТС2-СН4-03	СН ₄ , %, об. доля	от 0 до 2,5 и от 5 до 100	от минус 20 до плюс 40 °C от 60 до 119,7 кПа	(4 -20) мА или (1	PO ExiasI X
ИТС2-СН4-04		от 0 до 2,5	от минус 40 до плюс 55 °C от 87,8 до 119,7 кПа	– 5) мА	PO ExiasI X / 1ExiadIIB+H ₂ T4X
ИТС2-CH4-05 ИТС2-CH4-06		от 0 до 100 от 0 до 100	от минус 40 до плюс 55 °C от 60 до 119,7 кПа	цифровой, RS-485 (4 -20) мА или (1 – 5) мА	PO ExiasI X

1	2	3	4	5	6
ИТС2-ГГ-07	(CII +II)	от 0 до 57		цифровой, RS-485	PO ExiasI X /
ИТС2-ГГ-08	(СН ₄ +Н ₂), % НКПР	от 0 до 57	от минус 40 до плюс 55 °C от 87,8 до 119,7 кПа	(4 -20) мА или (1	1ExiadIIB+H ₂
	/0 TIKTII	01 0 до 37	01 87,8 до 119,7 кна	– 5) мА	T4X
ИТС2-СХНҮ-		от 0 до 100		цифровой, RS-485	PO ExiasI X /
09	$CH_4 \div C_{10}H_{12},$	01 0 Д0 100	от минус 40 до плюс 55 °C		1ExiadIIB+H ₂
ИТС2-СХНҮ-	% НКПР	от 0 до 100	от 87,8 до 119,7 кПа	(4 -20) мА или (1	T4X
10				-5) MA	DOE: IX/
ИТС2-СО-11	CO,	0 500	от минус 30 до плюс 45 °C	цифровой, RS-485	PO Exial X /
ИТС2-СО-12	ppm (млн ⁻¹)	от 0 до 500	от 87,8 до 119,7 кПа	(4 -20) мА или (1	1ExiaIIB+H ₂ T
ИТС2-СО-13				-5) MA	4 X PO ExiaI X /
ИТС2-СО-13	CO,	от 0 до	от минус 30 до плюс 45 °C	цифровой, RS-485	1ExiaIIB+H ₂ T
M1C2-CO-14	ppm (млн ⁻¹)	5000	от 87,8 до 119,7 кПа	(4 -20) мА или (1 - 5) мА	4 X
ИТС2-О2-15					PO Exial X /
ИТС2-О2-16	O_2 ,	от 0 до 25	от минус 30 до плюс 45 °C	(4 -20) мА или (1	1ExiaIIB+H ₂
11102 02 10	%, об. доля	01 0 до 23	от 87,8 до 119,7 кПа	-5) MA	T4 X
ИТС2-Н2S-17	** 6			цифровой, RS-485	PO Exial X /
ИТС2-Н2S-18	H_2S ,	от 0 до 100	от минус 30 до плюс 45 °C	(4 -20) мА или (1	1ExiaIIB+H ₂
	ppm (млн ⁻¹)		от 87,8 до 119,7 кПа	– 5) mA	T4 X
ИТС2-СО2-19	CO		20 45 °C	цифровой, RS-485	PO Exial X /
ИТС2-СО2-20	СО ₂ , %, об. доля	от 0 до 2	от минус 20 до плюс 45 °C от 87,8 до 119,7 кПа	(4 -20) мА или (1	1ExiaIIB+H ₂ T
	%, оо. доля		01 87,8 д0 119,7 кна	– 5) мA	4 X
ИТС2-NО-21	NO,		от минус 30 до плюс 45 °C	цифровой, RS-485	PO ExiaI X /
ИТС2-NО-22	ppm (млн ⁻¹)	от 0 до 20	от 87,8 до 119,7 кПа	(4 -20) мА или (1	1ExiaIIB+H ₂
			01 07,0 до 119,7 киа	– 5) мA	T4X
ИТС2-NO2-23	NO ₂ `		от минус 30 до плюс 45 °C	цифровой, RS-485	PO Exial X /
ИТС2-NO2-24	ppm (млн ⁻¹)	от 0 до 20	от 87,8 до 119,7 кПа	(4 -20) мА или (1	1ExiaIIB+H ₂ T
TITE CO. CYY 1 O.T.				-5) MA	4 X
ИТС2-СН4-25	CH ₄ ,	am 0 == 100	от минус 20 до плюс 45 °C	цифровой, RS-485	PO Exial X /
ИТС2-СН4-26	%, об. доля	от 0 до 100	от 87,8 до 119,7 кПа	(4 -20) мА или (1	1ExiaIIB+H ₂
HTC2 112 27				-5) MA	T4 X
ИТС2-Н2-27	H_2 ,	от 0 до	от минус 20 до плюс 45 °C	цифровой, RS-485	PO Exial X /
ИТС2-Н2-28	ppm (млн ⁻¹)	1500	от 87,8 до 119,7 кПа	(4 -20) мА или (1	1ExiaIIB+H ₂ T 4 X
				– 5) mA	4 Λ

Примечание — Датчики по заказу потребителя выпускаются с выходным разъемом или с выходным кабелем. Длина кабеля по умолчанию — $1\,\mathrm{m}$, по заказу до $5\,\mathrm{m}$.

Принцип действия датчиков в зависимости от исполнения:

- термокаталитический для ИТС2-СН4-01... ИТС2-СН4-04, ИТС2-ГГ-07, ИТС2-ГГ-08, ИТС2-СХНҮ-09, ИТС2-СХНҮ-10;
 - термокондуктометрический ИТС2-СН4-05, ИТС2-СН4-06;
- электрохимический ИТС2-CO-11... ИТС2-CO-14, ИТС2-O2-15, ИТС2-O2-16, ИТС2-H2S-17, ИТС2-H2S-18, ИТС2-NO-21, ИТС2-NO-22, ИТС2-NO2-23, ИТС2-NO2-24, ИТС2-H2-27, ИТС2-H2-28;
 - оптический инфракрасный ИТС2-СО2-19, ИТС2-СО2-20, ИТС2-СН4-25, ИТС2-СН4-26.

Конструктивно датчик представляет собой прямоугольную защитную оболочку, состоящую из корпуса и крышки, которая крепится к корпусу четырьмя винтами под специальный ключ. Один из винтов пломбируется разрушаемой пломбовой этикеткой (см. рисунок 2)

В корпусе установлены в соответствии с исполнением датчика плата измерительная и плата питания, соединенные между собой электрически и механически.

Ввод в датчик питания и ввод/вывод из него информационных сигналов осуществляется через разъем (или кабельный ввод по заказу).

На передней панели расположены:

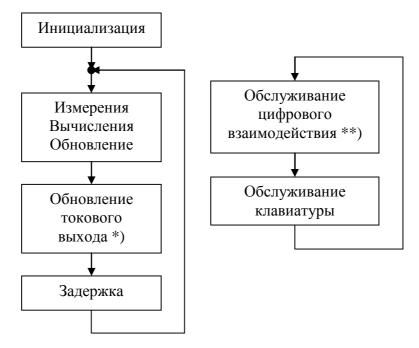
- отверстие для подачи газовой смеси к датчику;

- передний шильд, в прямоугольном отверстии которого виден дисплей для индикации концентрации измеряемого компонента, служебной и другой информации.

Управление работой датчика организовано через систему меню с помощью кнопок прокрутки «Д», «Д» и кнопки «Д» (которая выполняет функцию ввода), расположенных на боковой стенке датчика.

Общий вид датчика с выходным кабелем представлен на рисунках 1 и 2. По внешнему виду исполнения датчиков отличаются шильдами (цвет и надписи).

Рисунок 2


Степень защиты корпуса датчиков от доступа к опасным частям, от попадания внутрь внешних твердых предметов и от проникновения воды по ГОСТ 14254-96 – IP54.

По устойчивости к воздействию климатических факторов датчики в зависимости от исполнения соответствуют исполнению УХЛ категории 2 по ГОСТ 15150-69 для работы в диапазоне температур, указанном в таблице 1.

Способ забора пробы – диффузионный.

Программное обеспечение

Датчики имеют встроенное ПО. Структура ПО представлена на рисунке 3

- * только для датчиков с аналоговым выходом
- ** только для датчиков с цифровым выходом Рисунок 3

Основной частью ПО является измерительный процесс. Его выполнение начинается в момент подачи напряжения питания с инициализации. Далее благодаря задержке один раз в требуемый период происходит измерение аналоговых и/или цифровых сигналов сенсоров, установленных в датчиках. На основании полученных значений производится расчет измеряемого компонента и его выведение на ЖКИ. В случае с датчиками с аналоговым выходом на основании рассчитанной концентрации измеряемого компонента происходит формирование аналогового выхода.

В фоновом режиме происходит выполнение второй части ПО, которая отвечает за цифровое взаимодействие датчика с системой верхнего уровня (для датчиков с цифровым выходом) и за пользовательское меню. При получении запроса по цифровой сети запускаются процедуры, выполняющие формирование ответа и его непосредственную пересылку. При нажатии на кнопки клавиатуры датчика запускаются процедуры, выполняющие навигацию по пользовательскому меню.

Идентификационные данные программного обеспечения приведены в таблице 2.

Таблина 2

Таолиц	,			T
Наимено-	Идентифи-	Номер вер-	Цифровой	Алгоритм вычисления цифрового
вание	кационное	сии (иден-	идентифика-	идентификатора программного обес-
про-	наимено-	тификаци-	тор про-	печения
граммног	вание про-	онный но-	граммного	
обеспе-	граммного	мер) про-	обеспечения	
чения	обеспече-	граммного	(КС испол-	
	ния	обеспечения	няемого кода)	
				дцатиразрядной контрольной суммы: Загрузить 16-ти разрядный регистр числом FFFF ₁₆ . 1. Выполнить операцию XOR (исключающее ИЛИ) над первым байтом программы (адрес первого байта 3100 ₁₆) и старшим байтом регистра. Поместить результат в регистр. 2. Сдвинуть регистр на один разряд вправо. 3. Если выдвинутый вправо бит единица, выполнить операцию XOR между регистром и полиномом A001 ₁₆ . 4. Если выдвинутый бит ноль, вер-
				нуться в шагу 3. 5. Повторять шаги 3 и 4 до тех пор, пока не будут выполнены 8 сдвигов регистра. 6. Выполнить операцию ХОК над следующим байтом программы и регистром. 7. Повторять шаги 3-7 до тех пор, пока не будут выполнена операция ХОК над всеми байтами программы (адрес последнего байта FFFF ₁₆) и регистром. Содержимое регистра представляет собой контрольную сумму программного обеспечения
Прим	ечание – Ко	нтрольная сум	іма (КС) предст	гавлена в шестнадцатеричном формате.

Программное обеспечение датчиков имеет уровень защиты от непреднамеренных и преднамеренных изменений «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

- 1 Датчики с цифровым выходным сигналом осуществляют обмен информацией с внешним управляющим контроллером по магистральному цифровому интерфейсу RS-485 по протоколу обмена MODBUS RTU.
- 2 Датчики с аналоговым выходным сигналом обеспечивают преобразование объемной доли измеряемого компонента в выходные электрические сигналы в соответствии с функциями преобразования, приведенными в таблице 3.

Таблица 3

Таблица 3	1		1	
Наименование	Выходной	Диапазон	Функция	Формула определе-
	сигнал, мА	преобразования	преобразования	ния концентрации
ИТС2-СН4-03*	4 - 12	(0 -5) % об.дол.	$I_{BbIX} = 1,6C+4$	•
11102 0114 03	7 12	(0 3) 70 00.дол.	1 Bbix = 1,00 14	$C = \frac{I_{BMX} - 4}{1.6}$
				·
	12 - 20	(5 -100)	I _{BЫX} =	$C = \frac{I_{BMX} - 11,579}{I_{BMX}}$
		% об.дол.	0,0842C+11,579	$C = \frac{BBR}{0.0842}$
	1 2			I ***
	1 - 3	(0 -5) % об.дол.	$I_{BHX} = 0.4C+1$	$C = \frac{I_{BMX} - I}{I_{BMX}}$
				$C = \frac{I_{BLIX} - 1}{0.4}$
	3 - 5	(5 -100)	$I_{BbIX} = 0.021C + 2.895$	I 2.895
		% об.дол.	BBIX = 0,021 C + 2,033	$C = \frac{I_{BbIX} - 2,895}{0,021}$
				0,021
ИТС2-СН4-04*	4 - 12	(0 -5) % об.дол.	$I_{BbIX} = 1,6C+4$	$I_{\rm BMX}-4$
				$C = \frac{I_{BbIX} - 4}{1,6}$
	12 - 20	(5 100)	т	
	12 - 20	(5 -100)	I _{BbIX} =	$C = \frac{I_{BMX} - 11,579}{0,0842}$
		% об.дол.	0,0842C+11,579	0,0842
	1 - 3	(0 -5) % об.дол.	$I_{BbIX} = 0.4C+1$	$C = \frac{I_{BbIX} - 1}{0.4}$
		(0 0) /0 00.4011	1 BBIX 0, 10 11	$C = \frac{-BBIX}{OA}$
				0,4
	3 - 5	(5 -100) % об.дол.	$I_{BHX} = 0.021C + 2.895$	$C = I_{Bbix} - 2,895$
				$C = \frac{I_{BbIX} - 2,895}{0,021}$
ИТС2-СН4-06	4 - 20	(0-100)	$I_{BMX} = 0.16C+4$	
ИТС2-СП4-00	4 - 20	` ′	1 Bbix - 0,10C+4	$C = \frac{I_{BMX} - 4}{0.16}$
		% об.дол.		0,16
	1 - 5	(0-100)	$I_{BMX} = 0.04C+1$	$C = \frac{I_{BbIX} - 1}{0,04}$
		% об.дол.		$C = \frac{BBIX}{0.04}$
HEGO EE OO	4 20		7 0.150	0,04
ИТС2-ГГ-08	4 - 20	$(0 - 100) \% HK\Pi P$	$I_{BHX} = 0.16C+4$	$C = \frac{I_{BbIX} - 4}{0.16}$
				0,16
	1 - 5	(0 – 100) %НКПР	$I_{BMX} = 0.04C+1$	
	1 3	(0 100) /0111111	1 Bbix = 0,0 1C+1	$C = \frac{I_{Bbix} - 1}{2.24}$
				0,04
ИТС2-СХНҮ-	4 - 20	$(0-100) \text{ %HK\PiP}$	I B b I X = 0,16C+4	$C = \frac{I_{BMX} - 4}{I_{BMX}}$
10				$C = {0,16}$
	1 - 5	(O 100) 0/ HI/TID	IDLIV = 0.04C + 1	· · · · · · · · · · · · · · · · · · ·
	1 - 3	(0-100) % HKПP	I B b I X = 0.04 C + 1	$C = \frac{I_{BHX} - 1}{I_{BHX}}$
				0,04
ИТС2-СО-12	4 - 20	(0-500) ppm	$I_{BbIX} = 0.032C+4$	$C = \frac{I_{Bbix} - 4}{}$
		, , , , , , , , , , , , , , , , , , , ,	,	$C = \frac{0.032}{0.032}$
	1 7	(0. 500)	1 00000 1	·
	1 - 5	(0 - 500) ppm	$I_{BHX} = 0.008C + 1$	$C = \frac{I_{BMX} - 1}{I_{BMX}}$
				0,008
ИТС2-СО-14	4 - 20	(0-5000) ppm	$I_{BbIX} = 0.0032C+4$	$I_{res} - 4$
11102 00 14	. 20	(o 3000) ppin	- BDIA - 0,0032017	$C = \frac{I_{BMX} - 4}{0.0022}$
				0,0032
	1 - 5	(0 - 5000) ppm	$I_{BHX} = 0.0008C+1$	$_{\text{C}} = I_{\text{BbIX}} - 1$
				$C = \frac{I_{BblX} - 1}{0,0008}$
ИТС2-О2-16	4 - 20	(0 - 25) % об.дол.	$I_{BbIX} = 0.64C+4$	
r11C2-U2-10	4 - 20	(0 - <i>23) %</i> 00.дол.	1 BMX - 0,04C+4	$C = \frac{I_{Bbix} - 4}{I_{Bbix}}$
				0,64
	1 - 5	(0 - 25) % об.дол.	$I_{BbIX} = 0.16C + 1$	$I_{\text{BMY}} - 1$
			,	$C = \frac{I_{BbIX} - 1}{0.16}$
HECO HAC 10	4 20	(0. 100)	1 0160 1	
ИТС2-H2S-18	4 - 20	(0-100) ppm	$I_{BHX} = 0.16C+4$	$C = \frac{I_{BMX} - 4}{I_{BMX}}$
				0,16
	1 - 5	(0-100) ppm	$I_{BMX} = 0.04C+1$	I ₂₂₂₂ – 1
		(100) PP'''	- BBIA 5,5 12 11	$C = \frac{I_{BbIX} - 1}{0.04}$
				0,04

Наименование	Выходной	Диапазон	Функция	Формула определе-
	сигнал, мА	преобразования	преобразования	ния концентрации
ИТС2-СО2-20	4 - 20	(0 - 10) % об.дол.	$I_{BbIX} = 1,6C+4$	$C = \frac{I_{BbIX} - 4}{1,6}$
	1 - 5	(0 - 10) % об.дол.	$I_{BMX} = 0.4C+1$	$C = \frac{I_{BbIX} - 1}{0.4}$
ИТС2-NО-22	4 - 20	(0 – 100) ppm	$I_{BMX} = 0.16C+4$	$C = \frac{I_{BbIX} - 4}{0,16}$
	1 - 5	(0 – 100) ppm	$I_{BMX} = 0.04C+1$	$C = \frac{I_{BbIX} - 1}{0,04}$
ИТС2-NO2-24	4 - 20	(0 – 100) ppm	$I_{BMX} = 0.16C+4$	$C = \frac{I_{BbIX} - 4}{0.16}$
	1 - 5	(0 – 100) ppm	$I_{BMX} = 0.04C+1$	$C = \frac{I_{BbIX} - 1}{0,04}$
ИТС2-СН4-26*	4 - 12	(0 -5) % об.дол.	$I_{BMX} = 1,6C+4$	$C = \frac{I_{BbIX} - 4}{1.6}$
	12 - 20	(5 -100) % об.дол.	I _{Bых} = 0,0842C+11,579	$C = \frac{I_{BMX} - 11,579}{0,0842}$
	1 - 3	(0 -5) % об.дол.	$I_{BbIX} = 0.4C+1$	$C = \frac{I_{BMX} - 1}{0.4}$
	3 - 5	(5 -100) % об.дол.	$I_{BbIX} = 0.021C + 2.895$	$C = \frac{I_{BbIX} - 2,895}{0,021}$
ИТС2-Н2-28	4 - 20	(0 – 2000) ppm	$I_{BMX} = 0.008C+4$	$C = \frac{I_{BbIX} - 4}{0,008}$
	1 - 5	(0 – 2000) ppm	$I_{BMX} = 0.002C+1$	$C = \frac{I_{BbIX} - 1}{0,002}$

Примечания

1 Івых – значение выходного тока, мА.

2 * По требованию заказчика исполнения датчика ИТС2-СН4-03, ИТС2-СН4-04 и ИТС2-СН4-26 могут быть изготовлены со следующими функциями преобразования:

Выходной сигнал,	Диапазон преобразования,	Функция	Формула определения
мА	% б.доля	преобразования	концентрации
4 – 20	0 - 5	$I_{BbIX} = 3.2C + 4$	$C = \frac{I_{BbIX} - 4}{3,2}$
1 – 5	0 - 5	$I_{BMX} = 0.8C + 1$	$C = \frac{I_{BbIX} - 1}{0.8}$

При этом пределы допускаемой основной абсолютной погрешности в диапазоне измерения объемной доли метана от 0 до 2,5 %:

- ± 0,1 % для ИТС2-СН4-03, ИТС2-СН4-26;
- ± 0,2 % для ИТС2-СН4-04.
- 3 Диапазоны измерений и диапазоны показаний датчиков соответствуют значениям, указанным в таблице 4
- 4 Пределы допускаемой основной погрешности датчиков соответствуют значениям, указанным в таблице 4

Таблица 4

Наименование	Единица из-	Диапазон по-	Диапазон изме-	Пределы допускаемой основ-			
	мерения	казаний	рений	ной погрешности			
ИТС2-СН4-01	%, об. доля	от 0 до 100	от 0 до 2,5	Δ д = \pm 0,1			
ИТС2-СП4-01	%, оо. доля	010 до 100	от 5 до 100	Δ д = \pm 3,0			
ИТС2-СН4-02	%, об. доля	от 0 до 100	от 0 до 2,5	Δ д = \pm 0,2			
ИТС2-СН4-03	% об нона	от 0 то 100	от 0 до 2,5	Δ д = \pm 0,1			
ИТС2-СП4-03	%, об. доля	от 0 до 100	от 5 до 100	$\Delta_{\mathcal{I}} = \pm 3.0$			
ИТС2-СН4-04	%, об. доля	от 0 до 100	от 0 до 2,5	$\Delta_{\mathcal{I}} = \pm 0.2$			
ИТС2-СН4-05	%, об. доля	от 0 до 100	от 0 до 100	$\Delta \mu = \pm 3.0$			
ИТС2-СН4-06	%, об. доля	от 0 до 100	от 0 до 100	$\Delta_{\rm H} = \pm 3.0$			
ИТС2-ГГ-07	% НКПР	от 0 до 100	от 0 до 57	$\Delta \mu = \pm 5.0$			
ИТС2-ГГ-08	% НКПР	от 0 до 100	от 0 до 57	$\Delta \mu = \pm 5.0$			
ИТС2-СХНҮ-09	% НКПР	от 0 до 100	от 0 до 100	$\Delta д = \pm 5,0$ по поверочному			
				компоненту (СН ₄)			
				Δ д = \pm 7,0 по неповерочному			
				компоненту			
ИТС2-СХНҮ-10	% НКПР	от 0 до 100	от 0 до 100	Δ д = \pm 5,0 по поверочному			
				компоненту (СН ₄)			
				Δ д = \pm 7,0 по неповерочному			
				компоненту			
ИТС2-СО-11	ppm (млн ⁻¹)	от 0 до 500	от 0 до 50	$\Delta_{ m II}=\pm5,0$			
11102-00-11	ppiii (MJiH)	01 0 до 300	от 50 до 500	$\delta_{\rm A}=\pm~10~\%$			
ИТС2-СО-12	ppm (млн ⁻¹)	or 0 vo 500	от 0 до 50	$\Delta_{\rm II}=\pm5.0$			
M1C2-CO-12	ррш (млн)	¹) от 0 до 500	от 50 до 500	$\delta_{\rm II} = \pm~10~\%$			
HTC2 CO 12	(,,,,,-1)	a= 0 = 5000	от 0 до 500	$\Delta_{\rm II} = \pm 50$			
ИТС2-СО-13	ppm (млн ⁻¹)	от 0 до 5000	от 500 до 5000	$\delta_{\rm II} = \pm~10~\%$			
ИТС2-СО-14	· -1>	0 5000	от 0 до 500	$\Delta_{\rm H} = \pm 50$			
	ppm (млн ⁻¹)	от 0 до 5000	от 500 до 5000	$\delta_{\rm II} = \pm 10 \%$			
ИТС2-О2-15	0/ 05 7075	om 0, vo 25	om 0, no 25				
ИТС2-О2-16	%, об. доля	от 0 до 25	от 0 до 25	$\Delta_{\rm A}$ = ± 0,6			
ИТС2-Н2S-17	ppm (млн ⁻¹)	от 0 до 100	от 0 до 10	$\Delta_{ m II}=\pm~1,5$			
И1С2-П25-17	ррш (млн)	от 0 до 100	от 10 до 100	$\delta_{\rm H} = \pm~15~\%$			
LITCO HOC 10	ppm (млн ⁻¹)	a= 0 =a 100	от 0 до 10	$\Delta_{\rm II}=\pm~1.5$			
ИТС2-Н2S-18	ррш (млн)	от 0 до 100	от 10 до 100	$\delta_{\rm A}=\pm~15~\%$			
ИТС2-СО2-19	%, об. доля	от 0 до 10	от 0 до 2				
ИТС2-СО2-20	%, оо. доля	01 0 до 10	01 0 до 2	$\Delta_{\rm II} = \pm 0.1$			
ИТС2-NО-21	ppm (млн ⁻¹)	от 0 до 100	от 0 до 20	$\Delta_{\Pi} = \pm (1 + 0.1 \cdot \text{CBX})$			
ИТС2-NO-22	ppiii (Miii)	01 0 до 100	01 0 до 20	$\Delta \mu = \pm (1 + 0, 1 \cdot CBX)$			
ИТС2-NO2-23	ppm (млн ⁻¹)	от 0 до 100	от 0 до 20	$\Delta_{\mathrm{II}} = \pm (0.5 + 0.1 \cdot \mathrm{CBX})$			
ИТС2-NO2-24	ppin (mini)	01 0 до 100		$\Delta \mu = \pm (0.5 \pm 0.1 \text{ CBA})$			
ИТС2-СН4-25	%, об. доля	от 0 до 100	от 0 до 2	$\Delta_{\mathcal{H}} = \pm 0.1$			
11102 0111 23	70, 00. доли	01 0 до 100	от 2 до 100	δ д = \pm 5,0 %			
ИТС2-СН4-26	%, об. доля	от 0 до 100	от 0 до 2	$\Delta \pi = \pm 0.1$			
	/o, оо. доля	01 0 до 100	от 2 до 100	δ д = \pm 5,0 %			
ИТС2-Н2-27	ppm (млн ⁻¹)	от 0 до 2000	от 0 до 1500	$\Delta_{\Pi} = \pm (2 + 0.12 \cdot \text{Cbx})$			
ИТС2-Н2-28							
Примечание – Св	Примечание – Свх – объемная доля контролируемого компонента на входе датчика, млн ⁻¹						

5 Датчики с цифровым выходным сигналом (кроме датчиков, основанных на термокондуктометрическом методе измерения) имеют два порога срабатывания сигнализации программно устанавливаемых в диапазоне согласно таблице 5.

Таблица 5

таолица 5				
Наименование	Единица измере-	Диапазон уста-	Значение порога срабатывания сигна	
	кин	новки порогов	лизации, устанавлива	аемого на пред-
		сигнализации	приятии-изго	говителе
			предупредительного	аварийного
ИТС2-СН4-01	объемная доля,	от 0,5 до 2,5	1	2
ИТС2-СН4-02	%	01 0,3 до 2,3	1	<u> </u>
ИТС2-ГГ-07	% НКПР	от 10 до 57	20	40
ИТС2-СХНҮ-09	% НКПР	от 10 до 100	20	40
ИТС2-СО-11	ppm (млн ⁻¹)	от 17 до 100	17	85
ИТС2-СО-13	ppm (млн ⁻¹)	от 20 до 500	по заказу	по заказу
ИТС2-О2-15	объемная доля, %	от 18 до 20	20	18
ИТС2-H2S-17	ррт (млн-1)	от 2 до 100	6	20
ИТС2-СО2-19	Объемная доля, %	от 0,5 до 2,0	1	1,5
ИТС2-NO-21	ррт (млн-1)	от 0,5 до 20	по заказу	по заказу
ИТС2-NO2-23	ррт (млн-1)	от 0,5 до 20	по заказу	по заказу
ИТС2-СН4-25	объемная доля, %	от 0,5 до 2,5	1	2

Примечания

- 1 Значения порогов срабатывания аварийной сигнализации должны указываться при заказе датчиков
- 2 При выпуске из производства, если не оговорено в заказе, должны быть установлены значения порогов срабатывания сигнализации, указанные в таблице 4.
- 3 Установленные значения порогов срабатывания аварийной сигнализации должны фиксироваться в паспорте на датчик.
- 4 Значения порогов срабатывания аварийной сигнализации могут быть изменены при эксплуатации только на предприятии-изготовителе или в его региональных сервисных центрах.
- 6 Пределы допускаемой вариации выходного сигнала датчиков не более половины основной абсолютной погрешности.
 - 7 Время прогрева датчиков не более:
 - 90 с для ИТС2-СН4-25, ИТС2-СН4-26;
 - 60 с для всех остальных исполнений.
- 8 Предел допускаемого времени установления показаний на уровне 90% от установившегося значения ($T_{0,9}$) не более указанного в таблице 6
- 9 Время работы датчиков без ручной корректировки показаний не менее указанного в таблице 6.

Таблица 6

Наименование	T _{0,9} , c	Время работы без ручной корректировки показаний, сут
ИТС2-СН4-01	20	30
ИТС2-СН4-02	20	30
ИТС2-СН4-03	20	30
ИТС2-СН4-04	20	30
ИТС2-СН4-05	20	180
ИТС2-СН4-06	20	180
ИТС2-ГГ-07	20	30
ИТС2-ГГ-08	20	30
ИТС2-СХНҮ-09	40	90
ИТС2-СХНҮ-10	40	90
ИТС2-СО-11	45	90

Наименование	$T_{0,9}$, c	Время работы без ручной корректировки показаний, сут
ИТС2-СО-12	45	90
ИТС2-СО-13	45	90
ИТС2-СО-14	45	90
ИТС2-О2-15	30	90
ИТС2-О2-16	30	90
ИТС2-H2S-17	45	90
ИТС2-H2S-18	45	90
ИТС2-СО2-19	30	90
ИТС2-СО2-20	30	90
ИТС2-NO-21	45	90
ИТC2-NO-22	45	90
ИТС2-NO2-23	45	90
ИТС2-NO2-24	45	90
ИТС2-СН4-25	30	90
ИТС2-СН4-26	30	90
ИТС2-Н2-27	100	30
ИТС2-Н2-8	100	30

- $10~\rm{Пределы}$ допускаемой дополнительной погрешности датчиков от изменения температуры окружающей среды на каждые $10~\rm{^{\circ}C}$ в пределах рабочих условий эксплуатации соответствуют данным, указанным в таблице 7.
- 11 Пределы допускаемой дополнительной погрешности датчиков от изменения атмосферного давления в пределах рабочих условий эксплуатации соответствуют данным, указанным в таблице 7.
- 12 Пределы допускаемой дополнительной погрешности датчиков от изменения относительной влажности анализируемой среды в пределах рабочих условий эксплуатации соответствуют данным, указанным в таблице 7.

Таблица 7

Наименование	Значение дополнительной погрешности в долях Δ_{J} от изменения				
	температуры окру-	атмосферного давления	относительной влажно-		
	жающей среды		сти окружающей среды		
1	2	3	4		
ИТС2-СН4-01	1,0	1,0	1,0		
ИТС2-СН4-02	1,0	1,0	1,0		
ИТС2-СН4-03	1,0	1,0	1,0		
ИТС2-СН4-04	1,0	1,0	1,0		
ИТС2-СН4-05	1,0	1,0	1,0		
ИТС2-СН4-06	1,0	1,0	1,0		
ИТС2-ГГ-07	0,5	1,0	1,0		
ИТС2-ГГ-08	0,5	1,0	1,0		
ИТС2-СХНҮ-09	0,5	1,0	1,0		
ИТС2-СХНҮ-10	0,5	1,0	1,0		
ИТС2-СО-11	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %		
ИТС2-СО-12	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %		
ИТС2-СО-13	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %		
ИТС2-СО-14	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %		
ИТС2-О2-15	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %		
ИТС2-О2-16	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %		
ИТС2-H2S-17	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %		
ИТС2-H2S-18	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %		

1	2	3	4
ИТС2-СО2-19	0,5	2	0,4 на каждые 15 %
ИТС2-СО2-20	0,5	2	0,4 на каждые 15 %
ИТС2-NO-21	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %
ИTC2-NO-22	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %
ИТС2-NO2-23	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %
ИТС2-NO2-24	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %
ИТС2-СН4-25	0,5	2	0,4 на каждые 15 %
ИТС2-СН4-26	0,5	2	0,4 на каждые 15 %
ИТС2-Н2-27	0,4	0,2 на каждые 30 мм рт.ст.	0,4на каждые 15 %
ИТС2-Н2-28	0,4	0,2 на каждые 30 мм рт.ст.	0,4 на каждые 15 %

- 13 Датчики устойчивы к воздействию синусоидальной вибрации с частотой (5 35) Γ ц и амплитудой не более 0,35 мм.
 - 14 Датчики устойчивы к изменению пространственного положения.
- 15 Электрическое питание датчиков осуществляется от внешней искробезопасной цепи уровня «ia» с напряжением от 6 до 12 В.

Примечание – При использовании датчиков в невзрывоопасной среде допускается питание от источника в общепромышленном исполнении.

 $16~{\rm Makcumaльный}$ ток потребления датчиков в импульсе (Imax) и ток потребления покоя (Iпок) при Uпит = $12~{\rm B}~{\rm B}$ в зависимости от метода измерения и вида выходного сигнала не более значений, указанных в таблице 8.

Таблица 8

Наименование	Метод измерения	Выходной сигнал	Imax, мА	Іпок, мА
ИТС2-СН4-01		Цифровой	25	2
ИТС2-СН4-02		цифровои	23	2
ИТС2-СН4-03	Термокаталитиче-	(1 - 5) мА	26	3
11102-0114-03	ский	(4 - 20) мА	27	4
ИТС2-СН4-04		(1 - 5) MA	26	3
111 C2-C114-04		(4 - 20) мА	27	4
ИТС2-СН4-05	Термокондук-	Цифровой	25	2
ИТС2-СН4-06	тометрический	(1 - 5) мА	26	3
	томстрический	(4 - 20) мА	27	4
ИТС2-ГГ-07		Цифровой	25	2
ИТС2-ГГ-08		(1 - 5) мА	26	3
11102-11-00	Термокатали-	(4 - 20) мА	27	4
ИТС2-СХНҮ-09	тический	Цифровой	25	2
ИТС2-СХНҮ-10		(1 - 5) MA	26	3
M1C2-CAIII-10		(4 - 20) мА	27	4
ИТС2-СО-11		Цифровой	4	2
ИТС2-СО-12		(1 - 5) мА	5	3
M1C2-CO-12	- Электрохимический	(4 - 20) мА	6	4
ИТС2-СО-13	Элсктрохимический	Цифровой	4	2
ИТС2-СО-14		(1 - 5) MA	5	3
M1C2-CO-14		(4 - 20) мА	6	4
ИТС2-О2-15		Цифровой	4	2
ИТС2-О2-16		(1 - 5) мА	7	5
И1С2-О2-16	Эномполич	(4 - 20) мА	12	10
ИТС2-H2S-17	Электрохимический	Цифровой	4	2
ИТС2-Н2Ѕ-18] [(1 - 5) мА	5	3
F11C2-1125-10		(4 - 20) мА	6	4

Наименование	Метод измерения	Выходной сигнал	Imax, мА	Іпок, мА
ИТС2-СО2-19	Оптический	Цифровой	8	4
ИТС2-СО2-20	инфракрасный	(1 - 5) мА	9	5
M1C2-CO2-20		(4 - 20) мА	10	6
ИТС2-NО-21		Цифровой	4	2
ИТС2-NО-22	- Электрохимический	(1 - 5) мА	5	3
		(4 - 20) мА	6	4
ИТС2-NO2-23		Цифровой	4	2
ИТС2-NO2-24		(1 - 5) мА	5	3
		(4 - 20) мА	6	4
ИТС2-СН4-25	Оптический	Цифровой	8	4
ИТС2-СН4-26	инфракрасный	(1 - 5) мА	9	5
		(4 - 20) мА	10	6
ИТС2-Н2-27	Электрохимический	Цифровой	4	2
ИТС2-Н2-28	Электрохимическии	(1 - 5) мА	5	3

- 17 Условия эксплуатации датчиков:
- 1) диапазон температуры окружающей среды указан в таблице 1;
- 2) относительная влажность до 100 % при температуре 35 °C без конденсации влаги;
- 3) диапазон атмосферного давления указан в таблице 1;
- 4) содержание пыли не более 1 г/м^3 ;
- 5) вибрация с частотой (5 35) Гц и амплитудой не более 0,35 мм.
- 6) содержание вредных веществ в контролируемой среде (каталитических ядов, снижающих каталитическую активность чувствительных элементов (ЧЭ) датчиков CH_4 , (CH_4+H_2), C_xH_y ; агрессивных веществ, разрушающих огнепреградитель, токоподводы и ЧЭ датчиков), не должно превышать предельно-допустимых концентраций (ПДК) согласно ГОСТ 12.1.005-88.

При наличии вредных веществ в контролируемой среде периодичность корректировки чувствительности датчиков CH_4 , (CH_4+H_2) , C_xH_y подбирается применительно к конкретным условиям, при этом срок службы датчиков может сокращаться.

- 18 Габаритные размеры датчиков с выходным разъемом (без учета длины кабеля), мм, не более: длина -40; ширина -55; высота -145.
 - 19 Масса датчиков (без учета массы кабеля) не более 0,25 кг.
- 20 Средний полный срок службы датчиков в условиях эксплуатации Б, указанных в руководстве по эксплуатации, не менее 6 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплект поставки датчиков приведен в таблице 9 Таблица 9

Обозначение	Наименование	Кол.	Примечание	
	Датчик горючих газов интеллек-		Согласно исполнению	
	туальный стационарный ИТС2	1 шт.		
ATPB.413419.002 PЭ	Руководство по эксплуатации			
Приложение А к	Методика поверки	1 экз.	*)	
ATPB.413419.002 PЭ				
АТРВ.413419.002 ПС	Паспорт	1 экз.		
ATPB. 305312.002	Насадка	1 шт.	*)	
	Ключ специальный	1 шт.		

Обозначение	Наименование	Кол.	Примечание	
	Розетка SP2110/S5	1	При поставке датчиков	
			с выходным разъемом	
	Упаковка	1 шт.		

Примечания

- 1 За отдельную плату предприятие-изготовитель поставляет:
- термокаталитический сенсор взамен отработавшего свой ресурс;
- электрохимические сенсоры взамен отработавших свой ресурс;
- оптические сенсоры взамен отработавших свой ресурс;
- CD-диск с программным обеспечением ATPB.431214.002 и протоколом обмена для датчиков с цифровым выходным сигналом.
- 2 Элементы, отмеченные знаком «*)» поставляются по одному на каждые пять датчиков, но не менее одного на партию.
- 3 Изменить длину кабеля допускается по отдельному договору.

Поверка

осуществляется в соответствии с документом «Датчики горючих и токсичных газов интеллектуальные стационарные ИТС2. Методика поверки», являющимся приложением А руководства по эксплуатации АТРВ.413419.002 РЭ, утвержденным ГЦИ СИ ОАО ФНТЦ «Инверсия» в июле 2012 г.

В перечень основного поверочного оборудования входят ГСО - ПГС, выпускаемые в баллонах под давлением по ТУ-6-16-2956-92:

```
метан в воздухе -3905-87, 3906-87;
метан в азоте -3890-87, 3894-87;
пропан в воздухе – 3968-87, 5323-90;
бутан в воздухе – 4293-88, 4294-88;
гексан в воздухе - 5322-90;
поверочный нулевой газ (ПНГ) в баллонах по ТУ 6-21-5-82 (воздух);
оксид углерода в азоте – 3800-87, 3802-87, 3808-87, 3814-87;
кислород в азоте -3726-87;
сероводород в азоте -6172-91, 6173-91;
сероводород в воздухе – 9172-2008;
диоксид углерода в азоте -3764-87;
оксид азота в азоте – 8374-2003;
диоксид азота в азоте – 8739-2006;
водород в азоте – 9168-2008;
водород в воздухе – 3947-87, 3951-87;
азот марки Б в баллонах по ТУ 6-26-39-79.
```

Сведения о методиках (методах) измерений

Методики измерений приведены в руководстве по эксплуатации.

Нормативные и технические документы, устанавливающие требования к датчикам горючих и токсичных газов интеллектуальным стационарным ИТС2

- 1 ГОСТ 13320-81. Газоанализаторы промышленные автоматические. Общие технические условия.
- 2 ГОСТ 24032-80. Приборы шахтные газоаналитические. Общие технические требования. Методы испытаний.
- 3 ГОСТ 22782.3-77. Электрооборудование взрывозащищенное со специальным видом взрывозащиты. Технические требования и методы испытаний.
- 4 ГОСТ Р 52350.0-2005 (МЭК 60079-0-2004). Электрооборудование для взрывоопасных газовых сред. Часть 0. Общие требования.

- 5 ГОСТ Р 52350.1-2005 (МЭК 60079-1:2003). Электрооборудование для взрывоопасных газовых сред. Часть 1. Взрывонепроницаемые оболочки "d".
- 6 ГОСТ Р 52350.11-2005 (МЭК 60079-11:2006). Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная электрическая цепь «i».
- 7 ГОСТ Р 52350.29.1-2010 (МЭК 60079-29-1-2007). Взрывоопасные среды. Часть 29-1. Газоанализаторы. Общие технические требования и методы испытаний газоанализаторов горючих газов.
- 8 ГОСТ 8.578-2008 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
 - 9 Технические условия ТУ 4215-012-76434793-10.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- 1 Осуществление деятельности в области охраны окружающей среды.
- 2 Осуществление деятельности по обеспечению безопасности при чрезвычайных ситуациях.

Изготовитель

ООО «Научно-производственный центр автоматизации техники безопасности» (ООО «НПЦ АТБ»), г. Москва 109202, г. Москва, ул. Басовская, 6. Тел/факс: (495) 543-42-77, e-mail: npcatb@mail.ru

Испытательный центр

ГЦИ СИ ОАО ФНТЦ «Инверсия», Аттестат аккредитации № 30076-08 от 27.06.2008 107031, г.Москва, ул. Рождественка, д.27, тел/факс (495) 608-41-23, E-mail: inversiya@yandex.ru, inversiyaDIR@yandex.ru.

Заместитель Руководителя Федерального		
агентства по техническому регулированию и метрологии		Ф.В.Булыгин
М.п.	«»	2012 г.