

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.32.138.A № 48338

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Система измерительная коммерческого учета тепловой энергии и теплоносителя ОАО "Фортум" филиал "Аргаяшская ТЭЦ"

заводской номер 05

ИЗГОТОВИТЕЛЬ

ООО "НТЦ "Комплексные системы" г. Челябинск

РЕГИСТРАЦИОННЫЙ № 51346-12

ДОКУМЕНТ НА ПОВЕРКУ МП 51346-12

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 02 октября 2012 г. № 824

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.В.Булыгин
Федерального агентства	
	"" 2012 г.
Серия СИ	№ 00681

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная коммерческого учета тепловой энергии и теплоносителя ОАО «Фортум» филиал «Аргаяшская ТЭЦ»

Назначение средства измерений

Система измерительная коммерческого учета тепловой энергии и теплоносителя ОАО «Фортум» филиал «Аргаяшская ТЭЦ» (далее – АСКУТЭ) предназначена для измерения документирования и архивации параметров теплоносителя (объемного расхода (объема), температуры, избыточного давления); вычисления значений массового расхода (массы) теплоносителя, тепловой энергии при осуществлении взаимных финансовых расчетов между энергоснабжающими организациями и потребителями тепловой энергии, контроля за тепловыми и гидравлическими режимами работы систем теплоснабжения.

Описание средства измерений

Принцип действия АСКУТЭ заключается в непрерывном измерении, преобразовании и обработке информации, поступающей по измерительным каналам (далее – ИК) объемного расхода, температуры, избыточного давления теплоносителя (вода и перегретый пар), барометрического давления и вычисления массового расхода (массы) теплоносителя и тепловой энергии.

АСКУТЭ имеет иерархичную структуру состоящей из двух уровней: уровня узлов учета (далее – УУ) тепловой энергии и теплоносителя и уровня сервера баз данных (далее - СБД).

Уровень УУ АСКУТЭ построен из первичных преобразователей расхода, температуры, давления, расчетно-измерительных контроллеров (далее – вычислители) (состав уровня представлен в таблице 1) и служит для выполнения следующих задач:

- непрерывное измерение параметров теплоносителя на узлах учета (объемный расход, температура, давление);
- вычисление параметров теплоносителя (массовый расход, масса, энтальпия, плотность, тепловая энергия) на узлах учета;
 - передача измеренных и вычисленных параметров по линиям связи.

Таблица 1 – Состав уровня УУ тепловой энергии и теплоносителя.

Наименование Компонента	№ в Гос. Реестре	
Измерительные компоненты		
Диафрагма в соответствии с ГОСТ 8.586.1-5	_	
Преобразователь давления измерительный ЕЈХ110А капсула М	28456-09	
Преобразователь давления измерительный ЕЈХ530А капсула В	28430-09	
Датчик давления Метран-55	18375-08	
Измерительный преобразователь избыточного давления КРТ-9	24564-07	
Комплект термометра сопротивления КТСП Метран-206	38790-08	
Термометр сопротивления ТСП Метран-206	19982-07	
Термометр сопротивления ДТС	28354-10	
Термометр сопротивления ТСП-0193	40163-08	
Термопреобразователь сопротивления Взлет ТПС	21278-11	
Расходомер UFM 3030	45410-10	
Расходомер-счетчик ультразвуковой УРСВ «Взлет МР»	28363-04	
Расходомер-счетчик жидкости ультразвуковой US800	21142-11	
Связующие компоненты		
Разделитель сегментов магистрали CAN-BUS PC-62		

Контроллер Ethernet K-104	_
Комплексный компонент	
Преобразователи расчетно-измерительные ТЭКОН-19	24849-10

Допускается замена компонентов на аналогичные, утвержденных типов с метрологическими характеристиками, не уступающими перечисленным в таблице 1.

Уровень СБД АСКУТЭ построен на базе программно-аппаратного комплекса Дельта/8 (далее – Дельта/8) и служит для выполнения следующих задач:

- цикличный сбор результатов измерений и информации о состоянии измерительных компонентов с вычислителей;
 - вычисление значения тепловой энергии, отпущенной потребителю;
 - сохранение собранной информации в архивной базе данных АСКУТЭ;
 - визуализация процесса измерения и формирование отчетов;
 - поддержание единого времени в технологической сети АСКУТЭ;
 - защита измерительной информации от несанкционированного доступа.

Синхронизацию времени вычислителей производит Дельта/8. Коррекция времени производится каждые 4 часа при расхождении времени вычислителя со временем Дельта/8 на ± 3 сек.

АСКУТЭ производит вычисления отпущенной тепловой энергии, плотности и энтальпии теплоносителя в соответствии с ПР 34.09, МИ-2553-99, МИ 2412-97 и МИ-2451-98.

АСКУТЭ представляет собой единичный экземпляр измерительной системы, спроектированной для конкретного объекта из компонентов серийного отечественного и импортного изготовления. Монтаж и наладка системы осуществлены непосредственно на объекте эксплуатации в соответствии с проектной документацией на систему и эксплуатационными документами ее компонентов.

Программное обеспечение (далее – ПО) АСКУТЭ включает в себя ПО вычислителей и ПО Дельта/8. ПО АСКУТЭ разделено на метрологически значимую и метрологически незначимую части. К метрологически значимой части ПО АСКУТЭ относятся: ПО вычислителей, и следующих программных модулей Дельта/8: сервер данных, сервер архива, модули ввода данных, модуль расчета тепла. К метрологически незначимой части ПО системы относятся следующие программные модули Дельта/8: конфигуратор мнемосхем, программа мониторинга, подсистема WEB-мониторинга.

Защита ПО АСКУТЭ от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу, осуществляется путем разделения, идентификации, защиты от несанкционированного доступа.

Таблица 2 – Параметры ПО АСКУТЭ

Наименование	Идентификаци-	Номер	Цифровой иденти-	Алгоритм вычисле-
ПО	онное наимено-	версии	фикатор ПО (кон-	ния цифрового иден-
110	вания ПО	ПО	трольная сумма)	тификатора ПО
Сервер данных	datasever.exe	1.2.11.	B2FCFE46	CRC-32
Дельта/8	datase ver.exe	607	D21 C1 E 10	erte 32
Сервер архива	dbserver.exe	1.0.10.	8B0ED975	CRC-32
Дельта/8	doserver.exe	517	0D0ED973	CKC-32
Модуль ввода	ds_tecon19.exe	1.0.11.	583A6802	CRC-32
данных Дельта/8	us_iccoll19.exe	1116	J0JA0002	CKC-32

Идентификация ПО АСКУТЭ осуществляется путем определения структуры данных включающих в себя: наименования, версии и цифровые идентификаторы метрологически значимых частей ПО АСКУТЭ и сравнения ее со структурой данных полученной на этапе испытания системы.

ПО уровня УУ АСКУТЭ защищено от несанкционированного доступа, преднамеренного изменения алгоритмов и установленных параметров ограничением свободного доступа к портам вычислителей и защиты измерительной информации заданием уровня доступа к ней по чтению и записи. ПО уровня СБД АСКУТЭ защищено от несанкционированного доступа, преднамеренного изменения алгоритмов и установленных параметров гибкой настройкой прав доступа к отдельным программным модулям Дельта/8. Уровень защиты ПО АСКУТЭ соответствует уровню «В» согласно МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики АСКУТЭ представлены в таблицах 3-9.

Таблица 3 – Характеристики УУ теплоносителя и тепловой энергии АСКУТЭ

тионици в тириктории	Технологический параметр				
Наименование УУ	***	1 1			
	Изм.	Массовый	Темпера-	Абсолютное	
	среда	расход, т/ч	тура, °С	давление, кг/см ²	
Прямая сетевая вода бойлерная	вода	от 450	от 74	от 5,8	
<i>N</i> 21	води	до 1450	до 145	до 13,7	
Прямая сетевая вода бойлерная	вода	от 450	от 74	от 5,8	
№ 2	води	до 1450	до 145	до 13,7	
Прямая сетевая вода бойлерная	вода	от 450	от 74	от 5,8	
№ 3	ьода	до 1450	до 145	до 13,7	
Прямая сетевая вода бойлерная	родо	от 510	от 74	от 5,8	
<u>№</u> 4	вода	до 1650	до 145	до 13,7	
Обратиля доторая рода Лу 500	родо	от 250	от 40	от 2	
Обратная сетевая вода Ду 500	вода	до 1500	до 85	до 3	
Обратиля детороя рама Пу 600	20.40	от 250	от 40	от 2	
Обратная сетевая вода Ду 600	вода	до 2100	до 85	до 3	
Обратная сетевая вода Ду 700	родо	от 250	от 40	от 2	
Обратная сетевая вода Ду 700	вода	до 2700	до 85	до 3	
Пар на п/о Маяк Нитка-1	перегретый	от 30	от 288	от 16	
Пар на п/о маяк питка-т	пар	до 80	до 350	до 21,2	
Han via w/a Magya Hyynya 2	перегретый	от 30	от 288	от 16	
Пар на п/о Маяк Нитка-2	пар	до 80	до 350	до 21,2	
Han via w/a Magya Hyynya 2	перегретый	от 30	от 288	от 16	
Пар на п/о Маяк Нитка-3	пар	до 80	до 350	до 21,2	
CH	рода	от 10	от 50	от 3	
СН, прямая сетевая вода	вода	до 250	до 150	до 7,5	
CII of norman company	2070	от 10	от 55	от 2	
СН, обратная сетевая вода	вода	до 250	до 85	до 3	
Микрорайон «Строителей»,	2070	от 10	от 50	от 2	
прямая сетевая вода	вода	до 250	до 105	до 8	
Строителей», обратная сетевая		от 10	от 55	от 1	
вода	вода	до 250	до 85	до 3	
Жилищный поселок «Энерге-		от 150	от 50	от 2	
тик», прямая сетевая вода	вода	до 900	до 105	до 8	
Жилищный поселок «Энерге-	вода	от 150	от 40	от 1	
тик», обратная сетевая вода		до 900	до 65	до 3	
Пожитокиход вого		от 10	от 95	от 1,8	
Подпиточная вода	вода	до 80	до 105	до 2,8	

Холодный источник	вода	не измеряется	от 0 до 25	от 3 до 10
-------------------	------	------------------	---------------	---------------

Таблица 4 – Характеристики тепломагистралей АСКУТЭ

Наименование тепломагистрали	Разность температур в прямом и обратном трубопроводах, °C
ТМ на город Озерск	от 12 ¹⁾ до 105
TM «CH»	от 10 ¹⁾ до 95
ТМ «Микрорайон «Строителей»	от 34 ¹⁾ до 50
ТМ «Жилищный поселок «Энергетик»	от 10 ¹⁾ до 50

Таблица 5 – Условия эксплуатации АСКУТЭ

Параметр	Значение
Температура окружающего воздуха, °С	от 5 до 40
Относительная влажность не более, %	80
Атмосферное давление, кПа	от 84 до 106,7

Таблица 6 – Параметры электропитания АСКУТЭ

Параметр	Значение
Напряжение питающей сети, В	$220^{+15\%}_{-10\%}$
Частота питающей сети, Гц	50±1
Максимальная длительность отсутствия электропитания в сети, мин	30

Таблица 7 – Параметры надежности АСКУТЭ

Параметр	Значение
Вероятность безотказной работы АСКУТЭ (за интервал 5160 часов)	0,8
Коэффициент готовности уровня УУ АСКУТЭ (за интервал 5160 часов)	0,9992
Срок эксплуатации АСКУТЭ, не менее	10 лет

Таблица 8 – Метрологические характеристики АСКУТЭ

Характеристика	Значение
Пределы относительной погрешности измерения тепловой энергии на	
ТМ «СН», ТМ «Микрорайон «Строителей», ТМ «Жилищный поселок «Энергетик»	
 при разности температур в прямом и обратном трубопроводах 	
от 10 до 20 °C	±5 %
 – при разности температур в прямом и обратном трубопроводах более 20 °C 	±4 %
Пределы относительной погрешности измерения тепловой энергии на	
УУ «Пар на п/о Маяк Нитка-1», УУ «Пар на п/о Маяк Нитка-2», УУ	
«Пар на п/о Маяк Нитка-3»:	
 в диапазоне расхода пара от 10 до 30 % 	±5 %
– в диапазоне расхода пара от 30 до 100 %	±4 %

Примечания:¹⁾ В таблице представлено наименьшее значение нижнего предела разности температур. Нижний предел разности температур зависит от режима работы АТЭЦ

Таблица 9 – Метрологические характеристики ИК АСКУТЭ

ИК температуры				
Наименование УУ	Пределы абсолютной погрешности измерительного компонента в условиях эксплуатации 1)	Пределы абсолютной погрешности комплексного компонента в условиях эксплуатации 1)	Пределы абсолютной по- грешности ИК температуры в условиях эксплуатации ¹⁾	
Прямая сетевая вода Бойлерная №1; Прямая сетевая вода Бойлерная №2; Прямая сетевая вода Бойлерная №3; Прямая сетевая вода Бойлерная №4			±0,451 °C	
Обратная сетевая вода Ду 500; Обратная сетевая вода Ду 600; Обратная сетевая вода Ду 700; СН, обратная сетевая вода; Микрорайон «Строителей», обратная сетевая вода;	$\pm ig(0,15+0,002 t ig)$ °С, где t - измеренное значение		±0,335 °C	
СН, прямая сетевая вода	температуры		±0,461 °C	
Микрорайон «Строителей», прямая сетевая вода; Жилищный поселок «Энергетик», прямая сетевая вода Подпиточная вода		±0,1 °C	±0,374 °C	
Жилищный поселок «Энергетик», обратная сетевая вода			±0,297 °C	
Холодный источник			±0,224 °C	
Пар на п/о Маяк Нитка-1; Пар на п/о Маяк Нитка-2; Пар на п/о Маяк Нитка-3	$\pm (0,3+0,005 t)$ °C, где t - измеренное значение температуры		±2,052 °C	

	ИК	барометрического давления	
Измерительный компонент		Пределы приведенной погрешности	Пределы приведенной погрешности
Пределы основной приведенной погрешности	Пределы дополнительной приведенной погрешности	комплексного компонента в условиях эксплуатации ¹⁾	ИК барометрического давления в условиях эксплуатации ¹⁾
±0,1 %	±0,11 % /10 °C	±0,125 %	±0,272 %

ИК избыточного давления

	Измерительный компонент		Пределы приведенной	Пределы приведенной				
Наименование УУ	Пределы	Пределы	погрешности комплексного	погрешности ИК избыточного				
Паименование у у	основной	дополнительной	компонента в условиях	давления в условиях				
	приведенной	приведенной	эксплуатации ¹⁾	эксплуатации ¹⁾				
H F × M1	погрешности	погрешности						
Прямая сетевая вода Бойлерная №1;								
Прямая сетевая вода Бойлерная №2;	±0,1 %	±0,11 % /10 °C	±0,125 %	±0,272 %				
Прямая сетевая вода Бойлерная №3; Прямая сетевая вода Бойлерная №4; Пар на п/о Маяк Нитка-1; Пар на п/о Маяк Нитка-2;								
					Пар на п/о Маяк Питка-2, Пар на п/о Маяк Нитка-3;			
					СН, прямая сетевая вода;			
СН, обратная сетевая вода;								
Подпиточная вода								
Обратная сетевая вода Ду 500;								
Обратная сетевая вода Ду 600;								
Обратная сетевая вода Ду 700;								
Микрорайон «Строителей», прямая се-	±0,15 %	±0,15 % /10 °C	±0,125 %	±0,358 %				
тевая вода;	ĺ	,	,	,				
Микрорайон «Строителей», обратная								
сетевая вода								

Продолжение таблицы 9				
Жилищный поселок «Энергетик», прямая сетевая вода; Жилищный поселок «Энергетик», обратная сетевая вода	±0,5 %	±0,15 % /10 °C	±0,125 %	±0,596 %
	ИК массового р	расхода на базе сужа	ающих устройств	
	Измерительный компонент ³⁾			Продоли отпоритали пой
Наименование УУ	Пределы основной приведенной погрешности	Пределы дополнительной приведенной погрешности	Пределы погрешности комплексного компонента в условиях эксплуатации 1)	Пределы относительной погрешности ИК массового расхода в условиях эксплуатации 1) 2)
Прямая сетевая вода Бойлерная №1; Прямая сетевая вода Бойлерная №2; Прямая сетевая вода Бойлерная №3; Прямая сетевая вода Бойлерная №4	±0,04 % (более 6,3 кПа)	±0,02 % /10 °C (более 6,3 кПа)	±0,125 % от диапазона (погрешность измерения)	±2 %
Пар на п/о Маяк Нитка-1; Пар на п/о Маяк Нитка-2; Пар на п/о Маяк Нитка-3	±0,06 % (менее 6,3 кПа)	±0,065 % /10 °C (менее 6,3 кПа)	±0,1 % от измеренного значения (погрешность вычисления)	±3 %
]	ИК массового расхо	ода	
Наименование УУ	погрешности компонент	гносительной измерительного га в условиях уатации ¹⁾	Пределы погрешности комплексного компонента в условиях эксплуатации 1)	Пределы относительной погрешности ИК массового расхода в условиях эксплуатации 1)
Обратная сетевая вода Ду 500; Обратная сетевая вода Ду 600; Обратная сетевая вода Ду 700	±0,	75 %	$\pm 0.2\ \Gamma$ ц (погрешность измерения) $\pm 0.1\ \%$ (погрешность вычисления)	±0,77 %

Жилищный поселок «Энергетик», прямая сетевая вода; Жилищный поселок «Энергетик», обратная сетевая вода	±0,95 %	±0,2 Гц (погрешность измерения)	±0,96 %
Подпиточная вода	±1,45 %	±0,1 % (погрешность вычисления)	±1,46 %
СН, прямая сетевая вода; СН, обратная сетевая вода; Микрорайон «Строителей», прямая се-	$\pm 0.5 \; (\pm 1)^{4)} \; \% \;$ (скорость потока от 0,5 до 20 м/с)	±0,2 Гц (погрешность измерения)	+2 %
тевая вода; Микрорайон «Строителей», обратная сетевая вода	$\pm 1 \ (\pm 2)^{4)} \ \%$ (скорость потока от 0,25 до 0,5 м/с)	$\pm 0.1 \%$ (погрешность вычисления)	±2 %

Примечания:

1) С учетом таблиц 3, 4 и 5. Нормирование метрологических характеристик велось при разности температур более 10 °C

2) Погрешность ИК была определена с использованием программного комплекса «Расходомер ИСО» модуль «Расчет стандартных сужающих устройств»

3) В качестве измерительных компонентов ИК выступают средства измерения разности давлений

4) В скобках указаны пределы погрешности компонента при поверке имитационным методом.

Знак утверждения типа

наносится на маркировочную табличку, закрепленную на шкафу сервера АСКУТЭ, методом шелкографии и на титульный лист паспорта типографским способом.

Комплектность средства измерений

Наименование	Количество	
Система измерительная коммерческого учета тепловой энергии	1 экз.	
ОАО «Фортум» филиал «Аргаяшская ТЭЦ», зав. № 05.	1 JK3.	
Система измерительная коммерческого учета тепловой энергии	1 экз.	
ОАО «Фортум» филиал «Аргаяшская ТЭЦ». Паспорт.	1 JK3.	
Система измерительная коммерческого учета тепловой энергии	1 экз.	
ОАО «Фортум» филиал «Аргаяшская ТЭЦ». Методика поверки.		

Поверка

осуществляется по документу МП 51346-12 «Инструкция. Государственная система обеспечения единства измерений. Система измерительная коммерческого учета тепловой энергии ОАО «Фортум» филиал «Аргаяшская ТЭЦ». Методика поверки», утвержденному 15 августа 2012 г.

Сведения о методиках (методах) измерений

«Инструкция. Государственная система обеспечения единства измерений. Тепловая энергия и энергия теплоносителя. Методика измерения автоматизированной системой коммерческого учета тепловой энергии ОАО «Фортум» филиал «Аргаяшская ТЭЦ», аттестованная ООО «СТП» 29 ноября 2011 г, свидетельство об аттестации методики измерений №348-49-01.00270-2011.

Нормативные документы, устанавливающие требования к АСКУТЭ

- 1. Правила учета тепловой энергии и теплоносителя. Утв. Минтопэнерго 12.09.1995 № ВК-4936.
- 2. ГОСТ Р 8.596-2002 «Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- Осуществление торговли и товарообменных операций.

Изготовитель

OOO «НТЦ «Комплексные системы» г. Челябинск, ул. Косарева, 18, тел.(351) 797-84-40, факс (351) 797-84-59, e-mail: support-cs@complexsystems.ru, http://www.complexsystems.ru

Испытательный центр

ГЦИ СИ ООО «СТП». Регистрационный номер №30138-09. 420034, РФ, РТ, г.Казань, ул.Декабристов, д.81, тел.(843)214-20-98, факс (843)227-40-10, e-mail: office@ooostp.ru, http://www.ooostp.ru

Заместитель Руководителя Федерального
агентства по техническому
регулированию и метрологии

Ф.В.Булыгин

M.Π. « » 2012 г.