

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.38.001.A № 48862

Срок действия до 30 ноября 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Комплексы автоматизированные индивидуального дозиметрического контроля АКИДК-401

ИЗГОТОВИТЕЛЬ

Ангарский филиал ООО "Уралприбор", г.Ангарск, Иркутская обл.

РЕГИСТРАЦИОННЫЙ № 51882-12

ДОКУМЕНТ НА ПОВЕРКУ ЖБИТ1.280.003РЭ, раздел 4

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2012 г. № 1073

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства

Ф.В.Булыгин

"......" 2012 г.

№ 007583

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы автоматизированные индивидуального дозиметрического контроля АКИДК-401

Назначение средства измерений

Комплексы автоматизированные индивидуального дозиметрического контроля АКИДК-401 предназначены для измерения индивидуальных эквивалентов дозы $H_p(0,07)$ и $H_p(3)$ фотонного и бета-излучения с помощью термолюминесцентных дозиметров типов ДВДС-1 и ДВДС-2.

Описание средства измерений

Принцип действия комплекса автоматизированного индивидуального дозиметрического контроля АКИДК-401 (далее - комплекс АКИДК-401) основан на использовании явления термолюминесценции. Входящие в состав комплекса пассивные дозиметры содержат детекторы (термолюминофоры (ТЛ) на основе LiF), которые за время экспозиции в процессе ношения при индивидуальном дозиметрическом контроле накапливают энергию, пропорциональную дозе излучения. Измерение детекторов производится в считывателе комплекса СТЛ-402, где детекторы нагреваются по определенным температурным шаблонам. Дозиметрическая информация и температурная характеристика нагрева детектора, снимаемая термопарой, передаются управляющему программному обеспечению (ПО) персонального компьютера, выполняющему расчет доз облучения: индивидуальных эквивалентов дозы $H_p(3)$ – доза в хрусталике глаза и $H_p(0,07)$ – доза в коже на открытых участках тела и доза в коже рук.

Рассчитанные дозы корректируется с учетом коэффициентов нелинейности, потери информации и потери чувствительности соответствующего детектора, хранимых в базе данных комплекса и определяемых при калибровке партии дозиметров перед поставкой комплекса.

Результаты измерений заносятся в базу данных комплекса и отображаются на экране монитора в табличном и графическом виде.

Комплекс АКИДК-401 состоит из:

- считывателя СТЛ-402;
- дозиметра типа ДВДС-1, который содержит два ТЛ детектора за специальными фильтрами, и предназначен для измерения индивидуального эквивалента дозы $H_p(0,07)$ (доза в коже лица на глубине 7 мг/см²) и индивидуального эквивалента дозы $H_p(3)$ (доза в хрусталике глаза на глубине 300 мг/см²) фотонного излучения в диапазоне энергий от 10 кэВ до 3 МэВ и бета-излучения в диапазоне энергий от 200 кэВ до 3 МэВ;
- дозиметра типа ДВДС-2, который содержит один детектор за специальным фильтром, и предназначен для измерения индивидуального эквивалента дозы $H_p(0,07)$ (доза в коже рук) фотонного излучения в диапазоне энергий от 20 кэВ до 3 МэВ и бета-излучения в диапазоне энергий от 200 кэВ до 3 МэВ:
 - персонального компьютера;
 - принтера.

Для измерения индивидуального эквивалента дозы $H_p(0,07)$ в дозиметрах ДВДС-1 и ДВДС-2 используется детектор типа ДТВС-01 — тонкий эластичный диск толщиной 5 мг·см⁻² из пленки термолюминесцентной дозиметрической ПТВС-1, представляющей собой гомогенную композицию из термостойкой полиимидной матрицы и мелкодисперсного термолюминофора на основе фторида лития, активированного магнием и титаном.

Для измерения индивидуального эквивалента дозы $H_p(3)$ в дозиметре ДВДС-1 используется детектор монокристаллический термолюминесцентный на основе фторида лития, активированного магнием и титаном – ДТГ-4.

Считыватель СТЛ-402 предназначен для снятия с дозиметров ДВДС-1 и ДВДС-2 термолюминесцентной информации о накопленной дозе, определения индивидуального номера дозиметра ДВДС-1, предварительной обработки принятых данных и передачи номера дозиметра, кривой термовысвечивания (КТВ) и температурной характеристики в компьютер комплекса.

Персональный компьютер комплекса с установленным программным обеспечением (ПО) АКИДК-М предназначен для управления считывателем СТЛ-402, оперативной передачи и приема информации со считывателя СТЛ-402, хранения базы данных по дозиметрам и базы измерений, передачи дозиметрической информации в систему ИДК, вывода необходимой информации на принтер.

Рис. 1. Фотография комплекса автоматизированного индивидуального дозиметрического контроля АКИДК-401.

Программное обеспечение

Работа комплекса АКИДК-401 осуществляется с помощью устанавливаемого на персональном компьютере программного обеспечения (ПО).

Комплекс АКИДК-401 управляется унифицированным программным пакетом «АКИДК-М», предназначенным для ведения индивидуального дозиметрического контроля персонала предприятий различного профиля.

Функционально программное обеспечение комплекса АКИДК-М разделено на две независимые части:

- ПО базы данных индивидуального дозиметрического контроля (БД ИДК);
- ПО измерительной рабочей станции.

Назначение программного обеспечения БД ИДК заключается в организации единой базы данных персонала, находящегося на индивидуальном дозиметрическом контроле, и обеспечении интерфейса оператора с этой базой данных.

ПО БД ИДК осуществляет сбор дозиметрических данных с рабочих станций и привязку

этих данных к личным картам, в соответствии с типами и номерами дозиметров. Привязку дозиметрических данных можно осуществлять как в автоматическом режиме, так и в ручном, с учётом фоновых доз и возможностью задания конкретного отчётного периода. ПО БД ИДК позволяет создать разветвлённую структуру одного или нескольких предприятий, содержащую совокупность личных дозиметрических карт персонала по принадлежности к конкретному месту работы.

БД ИДК построена на основе архитектуры клиент-сервер: база данных ИДК может храниться на специально выделенном сервере (либо одном из рабочих компьютеров), при этом доступ к ней возможен одновременно нескольким операторам с разных ПК, объединённых в информационную сеть по протоколу ТСР/IP.

Любой из «Клиентов БД ИДК» имеет доступ к выходным данным любой из рабочих станций, при переносе этих данных в БД ИДК обеспечивается их уникальность.

Назначение ПО измерительной рабочей станции – управление процессом измерения рабочей станции, хранение и обработка дозиметрических данных.

Под рабочей станцией подразумевается персональный компьютер, с установленной системой управления базами данных (СУБД), к которому подключен один или несколько считывателей СТЛ.

Управление процессом измерения подразумевает управление устройствами обработки дозиметров - считывателями СТЛ, в соответствии с определёнными алгоритмами конкретных операций обработки дозиметров.

ПО измерительной рабочей станции включает в себя базу данных дозиметров с индивидуальными калибровочными данными, и шаблонами обработки, базу измерений - полученные результаты, включая кривые термовысвечивания (КТВ) и температуры, таблицу экспорта для «Базы данных персонала» - целевые данные для ПО БД ИДК.

База данных измерительной рабочей станции организована с использованием технологии клиент-сервер, имеющей классическую двухзвенную архитектуру, используемую в локальной конфигурации (на одном ПК). Система управления базой данных — SQL-сервер InterBase версии не ниже 8.0.

Выходные данные рабочей станции содержатся в специальной таблице экспорта ИДК (Dozes) в формате: номер/тип дозиметра, дата измерения, доза.

Подробное описание организации и состава ПО рабочей станции, а также инструкции по работе с базой данных рабочей станции приведены в Руководстве по эксплуатации комплекса АКИДК-401.

Программное обеспечение комплекса имеет развитую справочную систему. Её рекомендуется использовать для обучения работе с комплексом. Вызвать справку можно через главное меню программ «Клиент СТЛ», «Клиент БД дозиметров».

Идентификационные данные программного обеспечения комплекса АКИДК-401 приведены в Таблице 1.

Таблица 1

1				
Наименование программно-	Идентифика-	Номер версии	Цифровой иденти-	Алгоритм вы-
го обеспечения	ционное на-	(идентифика-	фикатор программ-	числения цифро-
	именование	ционный но-	ного обеспечения	вого идентифи-
	программного	мер) про-	(контрольная сумма	катора про-
	обеспечения	граммного	исполняемого кода)	граммного обес-
		обеспечения		печения
1	2	3	4	5
АКИДК-М	Stl.exe	2.1.1.448	758C5DAD30C82E59	MD5
«Рабочая станция СТЛ»			56578130A377B58B	
АКИДК-М	D 11 '	0 1 1 055	G50G6EG1 A 1107525	, ,
АКИДК-М	Bddozim.exe	2.1.1.357	C59C6FC1A1107535	MD5
«База данных дозиметров»		2.1.1.357	E03783009135718E	MD5
, ,		2.1.1.357		MD5 MD5

1	2	3	4	5
рабочей станции»				
АКИДК-М	Solve.dll	2.1.1.230	3DB5E55193093CE5 4AB998F125E42D90	MD5
«Библиотека функций»			4AD996F123E42D90	

Метрологически значимая часть ПО комплекса АКИДК-401 и измеренные данные достаточно защищены. Не требуется специальных средств защиты, исключающих возможность несанкционированной модификации, обновления (загрузки), удаления и иных преднамеренных изменений метрологически значимого ПО комплекса АКИДК-401 и базы данных.

В базе данных комплекса АКИДК-401 различаются три основных уровня доступа:

- -Администратор;
- -Оператор;
- -Просмотр.

Каждый уровень доступа имеет собственный пароль.

Если пароль не введён, либо неверен, то доступ к базе данных СТЛ запрещён.

Обеспечение целостности БД дозиметров при хранении и модификации реализовано средствами СУБД InterBase. Контроль целостности информации при передаче по каналам связи и управление доступом обеспечивается операционной системой и сервером InterBase.

В соответствии с разделом 2.6 МИ 3286-2010 и на основании результатов проверок уровень защиты ПО системы комплекса АКИДК-401 от непреднамеренных и преднамеренных изменений соответствует уровню «С».

Метрологические и технические характеристики

Основные технические и метрологические характеристики комплекса АКИДК-401 приведены в Таблице 2.

Таблица 2

№ п/п	Наименование параметра	Значение
1	Диапазон измерений индивидуального эквивалента дозы Hp(0,07)	
	фотонного и бета-излучений, мЗв	2 - 10000
2	Пределы основной относительной погрешности измерений дозы	
	Hp(0,07) фотонного и бета-излучений, %,	±25
3	Диапазон измерений индивидуального эквивалента дозы Hp(3)	
	фотонного и бета-излучений, мЗв	0.1 - 10000
4	Пределы основной относительной погрешности измерений Нр(3)	
	фотонного и бета-излучений, %,	±25
5	Порог регистрации Нр(0,07), мЗв, не более	2
6	Порог регистрации Нр(3), мЗв, не более	0,1
7	Самооблучение дозиметров ДВДС-1, ДВДС-2, не более	порог регистрации
8	Остаточная светосумма после облучения дозиметров	
0	ДВДС-1, ДВДС-2 дозой 100 мЗв, не более	порог регистрации
	Диапазон регистрируемых энергий фотонов при измерении	
9	Hp(0,07) и Hp(3), МэВ	
9	- дозиметром ДВДС-1	0.01 - 3
	- дозиметром ДВДС-2	0.02 - 3
	Энергетическая зависимость чувствительности дозиметров	
10	ДВДС-1 и ДВДС-2 в указанном диапазоне энергий фотонов отно-	
	сительно энергии 137Cs, %, не более	± 40
11	Диапазон регистрируемых энергий бета-излучения, МэВ	
11	- дозиметром ДВДС-1	0,2-2,25

№ п/п	Наименование параметра	Значение	
	- дозиметром ДВДС-2	0,6-2,25	
	Энергетическая зависимость чувствительности дозиметров к бета-		
	излучению в указанном диапазоне энергий относительно энергии		
12	Sr-90/Y-90, %, не более		
	- для дозиметров ДВДС-1	± 40	
	- для дозиметров ДВДС-2	± 70	
13	Анизотропия (фотонное излучение со средней энергией 65 кэВ) в		
13	углах 0 – 60°, %, не более	± 15	
14	Анизотропия (бета-излучение от источника Sr-90/Y-90) в углах 0 –		
	60°, %, не более	± 40	
15	Многократность использования дозиметров, не менее	100	
	Время обработки дозиметров, мин, не более		
16	- для дозиметров ДВДС-1	2	
	- для дозиметров ДВДС-2	1	
17	Время установления рабочего режима, мин, не более	30	
18	Время непрерывной работы, ч, не менее	24	
19	Напряжение питания комплекса, В 220 ⁺²² -33		
20	Частота сети переменного тока, Гц	50±1	
21	Мощность, потребляемая считывателем СТЛ-402 от сети пере-		
21	менного тока, ВА, не более	150	
22	Электрическое сопротивление изоляции цепей питания комплек-		
22	са, МОм, не менее	50	
23	Электрическое сопротивление заземления, Ом, не более	0,1	
	Габаритные размеры составных частей комплекса		
24	АКИДК-4010, мм - считывателя СТЛ-402	380 x 220 x 340	
	- дозиметра ДВДС-1	47 x 25 x 10	
	- дозиметра ДВДС-2	28 x 5	
	Масса составных частей комплекса АКИДК-4010, кг		
25	- считыватель СТЛ-402	13	
	- дозиметр ДВДС-1	0,008	
	- дозиметр ДВДС-2	0,002	
	Надежность комплекса:		
26	- средняя наработка комплекса на отказ,	4000 ч	
	- среднее время восстановления комплекса после отказа	12 ч	
27	Средний срок службы комплекса до капитального ремонта	6 лет	

Знак утверждения типа

Знак утверждения типа наносится на титульном листе Руководства по эксплуатации комплекса автоматизированного индивидуального дозиметрического контроля АКИДК-401 методом компьютерной графики.

Комплектность средства измерений

В комплект поставки комплекса АКИДК-401 входят составные части и эксплуатационная документация, указанные в таблице 3.

Таблица 3

№ п/п	Наименование	Обозначение	Кол-во, шт.	Примечание
1	Считыватель термолюминесцент-	ЖБИТ2.809.013	1	
	ный СТЛ-402			
2	Дозиметр ДВДС-1	ЖБИТ2.805.015		1)
3	Дозиметр ДВДС-2	ЖБИТ2.805.016		1)
4	Упаковка	ЖБИТ4.170.012	1	
5	Светофильтр	ЖБИТ7.220.002	2	ЗИП
6	Термопара	ЖБИТ5.182.007	2	ЗИП
7	Блок бесперебойного питания		1	2)
	(мощность не менее 600 Вт)			
8	Персональный компьютер	IBM совместимый	1	3)
		ПК с характеристи-		
		ками указанными в		
		п.2.1.4.2 РЭ		
9	Принтер		1	4)
10	Руководство по эксплуатации	ЖБИТ1.280.003РЭ	1	
	АКИДК-401			
11	АКИДК-М - Программное обеспе-	ЖБИТ1.280.003РП	1	
	чение измерительной рабочей			
	станции. Описание применения.			
	Руководство пользователя.			
12	Формуляр АКИДК-401	ЖБИТ1.280.003ФО	1	
13	Пакет программного обеспечения	Диск CD	1	

- 1) Количество дозиметров в соответствии с заказом.
- 2) По желанию заказчика возможна поставка без блока бесперебойного питания.
- ³⁾ Тип определяется при заказе. По желанию заказчика возможна поставка без компьютера.
 - 4) По желанию заказчика возможна поставка без принтера.

Поверка

осуществляется по документу ЖБИТ1.280.003РЭ «Комплекс автоматизированный индивидуального дозиметрического контроля АКИДК-401. Руководство по эксплуатации» (Раздел 4), утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» в сентябре 2012 г.

При поверке комплекса АКИДК-401 используются:

- эталонные поверочные дозиметрические установки гамма-излучения по ГОСТ 8.034-82 с набором источников гамма-излучения из радионуклида Cs-137, аттестованные с погрешностью не более ± 6 % по индивидуальному эквиваленту дозы Hp(0,07);
- эталонные поверочные дозиметрические установки бета-излучения по ГОСТ 8.035-2003 с набором источников бета-излучения из радионуклидов Sr-90/Y-90, аттестованные с погрешностью не более ± 8 % по индивидуальному эквиваленту дозы Hp(0,07) и Hp(3);
 - водный фантом по международному стандарту ИСО-4037-3.

Сведения о методиках (методах) измерений

ЖБИТ1.280.003РЭ «Комплекс автоматизированный индивидуального дозиметрического контроля АКИДК-401. Руководство по эксплуатации».

ЖБИТ1.280.003РП «Программный комплекс АКИДК-М. Программное обеспечение измерительной рабочей станции. Описание применения. Руководство пользователя».

Нормативные и технические документы, устанавливающие требования к комплексу АКИДК-401

ГОСТ 27451-87 «Средства измерений ионизирующих излучений. Общие технические условия».

ГОСТ Р МЭК 1066-90 «Системы дозиметрические термолюминесцентные для индивидуального контроля и мониторинга окружающей среды. Общие технические требования и методы испытаний».

ГОСТ 8.034-82 «Государственная система обеспечения единства измерений. Государственный первичный эталон и государственная поверочная схема для средств измерений экспозиционной дозы, мощности экспозиционной дозы и потока энергии рентгеновского и гамма-излучений».

ГОСТ 8.035-2003 «ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений поглощенной и эквивалентной дозы, мощности поглощенной и мощности эквивалентной дозы бета-излучения»

Технические условия ТУ 11 ЖБИТ1.280.003ТУ «Комплекс автоматизированный индивидуального дозиметрического контроля АКИДК-401», 2012 г.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при выполнении работ по обеспечению безопасных условий и охраны труда;
- при осуществлении деятельности по обеспечению безопасности при чрезвычайных ситуациях.

Изготовитель

Ангарский филиал ООО «Уралприбор» 665816, Россия, г. Ангарск Иркутской обл., а/я 6968

Телефон /Факс: (3955) 544030 e-mail: <u>info-af@uralpribor.com</u>

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»

регистрационный номер 30001-10

Юридический адрес: 190005, г. Санкт-Петербург, Московский пр., д.19

Тел. (812) 251-76-01, Факс(812) 713-01-14

e-mail: info@vniim.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

	Ф.В.Булыгин
М.п.	
«»	2012 г.