

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.32.007.A № 48873

Срок действия до 30 ноября 2017 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Установки теплометрические "УТМ-1"

ИЗГОТОВИТЕЛЬ

ОАО "Научно-производственное предприятие "Эталон", г.Омск

РЕГИСТРАЦИОННЫЙ № 51893-12

ДОКУМЕНТ НА ПОВЕРКУ **003-30007-2012**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2012 г. № 1073

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Ф.В.Булыгин
Федерального агентства		
	.1111	2012 г.

№ 007591

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Установки теплометрические «УТМ-1»

Назначение средства измерений

Установки теплометрические «УТМ-1» (далее установки) предназначены для поверки (калибровки) средств измерений поверхностной плотности теплового потока методом непосредственного сличения.

Описание средства измерений

Принцип действия установок заключается в создании стационарного и однородного теплового потока заданной плотности в рабочих зонах теплометрического блока. Рабочие зоны, предназначены для размещения поверяемых (калибруемых) датчиков теплового потока. Они расположены на тепловоспринимающей и теплоотдающей поверхностях нагревателя и холодильника теплометрической камеры. Стационарность теплового потока достигается поддержанием постоянного значения разности температур между их поверхностями. Однородность теплового потока в рабочих зонах достигается за счет высокой теплопроводности материалов, используемых для изготовления нагревателя и холодильника.

Общий вид установок теплометрических «УТМ-1» представлен на рисунке 1.

Установки состоят из теплометрического блока; блока охлаждения; блока управления.

Теплометрический блок содержит нагреватель с теплоотдающей поверхностью, холодильник с тепловоспринимающей поверхностью и расположенной между ними теплометрической камерой, заполненной песком. В центре рабочей зоны (100 мм) холодильника размещают контрольный датчик теплового потока. С помощью контрольного датчика определяют значение достигнутой плотности теплового потока и его отклонение от заданного. Тело холодильника и нагревателя представляют собой плоские диски. Холодильник содержит каналы для протекания охлаждающей жидкости, а нагреватель — нагревательный элемент и первый («горячий») спай дифференциального термоэлектрического датчика температуры.

Блок охлаждения состоит из резервуара с охлаждающей жидкостью, электронасоса, радиатора охлаждения и вентилятора. Электронасос обеспечивает циркуляцию охлаждающей жидкости в холодильнике теплометрического блока. В резервуар помещены также термопреобразователь сопротивления и второй ("холодный") спай дифференциального термоэлектрического датчика температуры.

Блок управления по сигналу дифференциального термоэлектрического датчика температуры поддерживает заданное значение разности температур между нагревателем и холодильником, управляя подводимой к нагревателю мощностью. Значение этой разности отображается на индикаторе блока управления. Кроме этого на индикаторе отображается значение температуры охлаждающей жидкости.

Программное обеспечение

Блок управления, входящий в состав установок, содержит встроенное программное обеспечение, размещённое в памяти программ микроконтроллера. Программное обеспечение участвует в выполнении функций поддержания заданной разности температур в рабочих зонах теплометрического блока, индикацию значений температуры охлаждающей жидкости, а также обеспечивает интерфейс пользователя.

Таблица 1

Тиолици	. *			
Наименование	Идентификацион-	Номер версии (иден-	Цифровой идентификатор	Алгоритм вы-
программного	ное наименование	тификационный но-	программного обеспече-	числения циф-
обеспечения	программного обес-	мер) программного	ния (контрольная сумма	рового иден-
	печения	обеспечения	исполняемого кода)	тификатора
ПО «БУ-8»	MKCH.643.02566	v. 2.1	ac4583300ebe2a4ef705b	MD5
110 «Dy-8»	540.00018 ПО	v 2.1	1b551168984	(RFC1321)

Встроенное программное обеспечение после занесения в память микроконтроллера на предприятии - изготовителе недоступно для считывания и модификации. Уровень защиты ПО СИ от непреднамеренных и преднамеренных изменений – «А» по МИ 3286-2010

Рисунок 1 - Общий вид установок теплометрических «УТМ-1»

Место пломбирования расположено на задней панели блока управления (рисунок 2). Это место одновременно является местом нанесения поверительного клейма.

Рисунок 2 – Место пломбирования

Метрологические и технические характеристики

Диапазон задаваемой поверхностной плотности теплового потока в теп-	
лометрической камере, B_T/M^2	от 10 до 2000
Номинальное значение коэффициента преобразования контрольного дат-	
чика теплового потока, Bт/м ² ·мB, не более	50
Допускаемые границы погрешности определения действительного значе-	
ния коэффициента преобразования контрольного датчика теплового пото-	
ка при доверительной вероятности 0,95, % не более	± 6
Нестабильность поддержания заданной плотности теплового потока в ус-	
тановившемся режиме, в мин. %, не более	$\pm 0,25$

Неоднородность плотности теплового потока на поверхностях рабочих	
зон нагревателя и холодильника, %, не более:	
для диаметра рабочей зоны 100 мм	± 2
для диаметра рабочей зоны 280 мм	± 3
Диапазон температуры на поверхностях рабочих зон, °C	
– холодильника	от 20 до 30
– нагревателя	от 25 до 220
Напряжение питающей сети, В	198242
Частота питающей сети, Гц	4951
Потребляемая мощность установки, В-А, не более	1500
Размеры теплометрической камеры, мм,	
– диаметр	300
– высота	30
Габаритные размеры, мм, не более:	
– блок управления	360 x 250 x 110
теплометрический блок	500 x 400 x 132
– блок охлаждения	402 x 402 x 630
Масса, кг, не более:	
– блок управления	3,2
теплометрический блок	40
– блок охлаждения	25
Средняя наработка на отказ, ч., не менее	4000
Средний срок службы, лет, не менее	8
Рабочие условия эксплуатации:	
диапазон температур окружающей среды, °С	20 ± 5

Знак утверждения типа

Знак утверждения типа наносится способом лазерной гравировки на табличку теплометрического блока и методом печати на титульный лист руководства по эксплуатации ДДШ 2.829.000 РЭ.

Комплектность спелства изменений

комплектность средства измерении			
Наименование	Обозначение	Кол.	Примечание
1 Блок теплометрический	ДДШ5.869.002	1	
2 Блок охлаждения	ДДШ5.883.007	1	
3 Блок управления	MKCH.405544.009	1	
4 Контрольный датчик теплового потока	ДТП0924-Э-Д-27-0	1	
5 Кабель XT1	ДДШ6.644.004	1	
6 Кабель XT3, XT4	ДДШ6.644.022	2	
7 Кабель XT5	ДДШ6.644.076	1	
8 Кабель XT2	MKCH.434641.022	1	
9 Гибкий шланг	-	2	
10 Эксикатор для песка	ГОСТ 25336-82	1	
11 Песок кварцевый	ГОСТ 8736-93	8	дм ³
12 Приспособление № 1 для выравнивания песка	MKCH.301251.018	1	
13 Комплект для поверки: - преобразователь термоэлектрический - приспособление № 2 для крепления преобразова-	TXK 9608-30	1	
теля термоэлектрического	MKCH.301411.012	1	
- вспомогательный датчик теплового потока	ДТП0924-Э-Д-27-0	1	
14 Руководство по эксплуатации	ДДШ2.829.000 РЭ	1	
15 Методика поверки	003-30007-2012	1	

Поверка

установок теплометрических «УТМ-1» проводится в соответствии с документом 003-30007-2012 «Установка теплометрическая «УТМ-1». Методика поверки», утвержденным ГЦИ СИ «СНИИМ» в июле 2012 г.

Основное поверочное оборудование:

- Государственный первичный эталон единицы поверхностной плотности теплового потока ГЭТ 172-2008;
 - Измеритель универсальный прецизионный В7-99.

Сведения о методиках (методах) измерений

Описание методики измерений содержится в руководстве по эксплуатации ДДШ2.829.000 РЭ.

Нормативные и технические документы устанавливающие требования к установкам теплометрическим «УТМ-1»

Установка теплометрическая «УТМ-1». Технические условия ТУ 4381-006-02566540-2012.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов, установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

ОАО «Научно - производственное предприятие «Эталон» 644009, г. Омск-9, ул. Лермонтова, 175 т (3812) 36-84-00, 36-94-53, факс 36-78-82

Испытательный центр

Государственный центр испытаний ГЦИ СИ СНИИМ 63000, г.Новосибирск, пр-т Димитрова, д.4 Тел./факс (383) 210-20-03, 210-13-60 E-mail: tphys@.sniim.nsk.ru Аттестат аккредитации № 30007-09

Заместитель руководителя Федерального агентства по техническому регулированию и метрологии

м.п. « » 2012 г.