

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.048.A № 48993

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО "Оборонэнергосбыт" (по сетям филиала "Приволжский" ОАО "Оборонэнерго", г. Ульяновск, объект №1)

ЗАВОДСКОЙ НОМЕР 001

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "Техносоюз" (ООО "Техносоюз"), г. Москва

РЕГИСТРАЦИОННЫЙ № 51965-12

ДОКУМЕНТ НА ПОВЕРКУ МП 51965-12

интервал между поверками 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. № 1067

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Ф.В.Булыги
Федерального агентства		
	и и	2012 г.
的是特别的是一种是一种的人的人们的一种的人		2012 1.

№ 007664

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1) (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, потребленной за установленные интервалы времени, сбора, обработки, хранения и передачи полученной информации в ОАО «АТС» и другие заинтересованные организации оптового рынка электроэнергии.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-ый уровень — информационно-измерительный комплекс (ИИК), трансформаторы тока (далее — ТТ) по ГОСТ 7746-2001, трансформаторы напряжения (далее — ТН) по ГОСТ 1983-2001, счетчики активной и реактивной электроэнергии по ГОСТ Р 52322-2005 и ГОСТ Р 52323-2005 в режиме измерений активной электроэнергии по ГОСТ Р 52425-2005 в режиме измерений реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблице 2.

2-ой уровень – информационно-вычислительный комплекс (ИВК), включающий в себя каналообразующую аппаратуру, сервер сбора данных (СД) регионального отделения ОАО «Оборонэнергосбыт» г. Самара НР ProLiant DL180R06, основной и резервный серверы баз данных (БД) ОАО «Оборонэнергосбыт» г. Москва SuperMicro 6026T-NTR+, устройства синхронизации времени УСВ-2, автоматизированные рабочие места персонала (АРМ) и программное обеспечение (ПО).

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности. Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин. Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков через GSM-сеть поступает на уровень ИВК регионального отделения ОАО «Оборонэнергосбыт». Сервер СД АИИС КУЭ при помощи программного обеспечения (ПО) осуществляет обработку измерительной информации (умножение на коэффициенты трансформации, перевод измеренных значений в именованные физические величины), формирование, хранение, оформление справочных и отчетных документов и последующую передачу информации на сервер БД по протоколу «Пирамида» посредством межмашинного обмена через распределенную вычислительную сеть ОАО «Обороэнергосбыт». При отказе основного канала сервер переключается на резервный. Резервный канал организован по технологии CSD. В качестве устройства передачи данных используется GSM/GPRS-модем Teleofis RX100R. На сервере БД осуществляется хранение поступающей

информации, оформление справочных и отчетных документов. Передача информации от сервера БД в ИАСУ КУ ОАО «АТС» и другие заинтересованные организации осуществляется по каналу связи с протоколом TCP/IP сети Internet в виде xml-файлов в соответсвии с приложением 11.1.1 «Формат и регламент предоставления результатов измерений, состояния средств и объектов измерений в ОАО «АТС», ОАО «СО ЕЭС» и смежным субъектам» к Договору о присоединении к торговой системе оптового рынка.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень счетчиков и ИВК (сервера СД и сервера БД). АИИС КУЭ оснащена устройствами синхронизации времени на основе УСВ-2, синхронизирующих собственное время по сигналам времени, получаемым от GPS/ GLONASS -приемника, входящего в состав УСВ-2. Погрешность синхронизации не более ±0,35 с. Часы сервера БД синхронизируются по времени часов УСВ-2, синхронизация осуществляется один раз в час, вне зависимости от наличия расхождения. Часы сервера СД синхронизируются по времени часов УСВ-2, синхронизация осуществляется один раз в час, вне зависимости от наличия расхождения. Сличение часов счетчиков с часами сервера СД производится каждый сеанс связи со счетчиками (не реже 1 раза в сутки). Корректировка часов счетчиков осуществляется при расхождении с часами сервера СД вне зависимости от наличия расхождения, но не реже чем 1 раз в сутки. Погрешность часов компонентов АИИС КУЭ не превышает ±5 с.

Программное обеспечение

В АИИС КУЭ ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1) используется ПО «Пирамида 2000» версии 3.0, в состав которого входят программы, указанные в таблице 1. ПО «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПО «Пирамида 2000».

Таблица 1 — Идентификационные данные ПО

Наименование ПО	Идентифика- ционное на- именование ПО	Номер версии (идентификационный номер)	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
1	2	3	4	5
Модуль вычисления значений энергии и мощности по группам точек учета	CalcClients.dll	3	e55712d0b1b219065 d63da949114dae4	MD5
Модуль расчета небаланса энергии/мощности	CalcLeakage.dll	3	b1959ff70be1eb17c8 3f7b0f6d4a132f	MD5
Модуль вычисления значений энергии потерь в линиях и трансформаторах	CalcLosses.dll	3	d79874d10fc2b156a0 fdc27e1ca480ac	MD5
Общий модуль, содержащий функции, используемые при вычислениях различных значений и проверке точности вычислений	Metrology.dll	3	52e28d7b608799bb3 ccea41b548d2c83	MD5
Модуль обработки значений физических величин, передаваемых в бинарном протоколе	ParseBin.dll	3	6f557f885b73726132 8cd77805bd1ba7	MD5
Модуль обработки значений физических величин, передаваемых по протоколам семейства МЭК	ParseIEC.dll	3	48e73a9283d1e6649 4521f63d00b0d9f	MD5

1	2	3	4	5
Модуль обработки значений физических величин, передаваемых по протоколу Modbus	ParseMod- bus.dll	3	c391d64271acf4055b b2a4d3fe1f8f48	MD5
Модуль обработки значений физических величин, передаваемых по протоколу Пирамида	ParsePira- mida.dll	3	ecf532935ca1a3fd32 15049af1fd979f	MD5
Модуль формирования расчетных схем и контроля целостности данных нормативносправочной информации	SynchroNSI.dll	3	530d9b0126f7cdc23e cd814c4eb7ca09	MD5
Модуль расчета величины рас- синхронизации и значений кор- рекции времени	VerifyTime.dll	3	1ea5429b261fb0e288 4f5b356a1d1e75	MD5

Системы информационно-измерительные контроля и учета энергопотребления «Пирамида», включающие в себя ПО «Пирамида 2000», внесены в Госреестр №21906-11. ПО «Пирамида 2000» аттестовано на соответствие требованиям нормативной документации, свидетельство об аттестации № АПО-209-15 от 26 октября 2011 года, выданное ФГУП «ВНИ-ИМС».

Предел допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляет 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых электросчетчиков и измерительных трансформаторов.

Оценка влияния ПО на метрологические характеристики СИ – метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Таблица 2 — Состав измерительных каналов АИИС КУЭ

Номер	Наименование	Состав измерительного канала				Вид электро- энергии	Метрологические характеристики ИК	
изме- рений	объекта	TT	ТН	Счетчик	ИВК		Основная погреш- ность, %	Погреш- ность в ра- бочих ус- ловиях, %
1	2	3	4	5	6	7	8	9
1	КТП-6324п 10/0,4 кВ, РУ- 0,4 кВ, ввод 0,4 кВ тр-ра Т-1	Т-0,66 Кл.т. 0,5 200/5 Зав. № 057274 Зав. № 057272 Зав. № 056811	_	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1,0 Зав. № 1105120765	HP Pro- Liant DL180R0 6 3ab. № CZJ2360	Актив- ная Реактив- ная	±1,0 ±2,1	±3,2 ±5,6
2	КТП-6320п 10/0,4 кВ, РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-1	Т-0,66 Кл.т. 0,5 600/5 Зав. № 098691 Зав. № 098663 Зав. № 098710	_	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1,0 Зав. № 1105120573	6НН	Актив- ная Реактив- ная	±1,0 ±2,1	±3,2 ±5,6

1	2	3	4	5	6	7	8	9
3	КТП-6320п 10/0,4 кВ, РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-2	Т-0,66 Кл.т. 0,5 600/5 Зав. № 098676 Зав. № 098711 Зав. № 098693	_	Меркурий 230 ART-03 PQR- SIDN Кл.т. 0,5S/1,0 Зав. № 10167241		Актив- ная Реактив- ная	±1,0 ±2,1	±3,2 ±5,6
4	КТП-6323п 10/0,4 кВ, РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-1		_	ПСЧ- 4ТМ.05МК.20 Кл.т. 1,0/2,0 Зав. № 1105120912		Актив- ная Реактив- ная	±1,1 ±2,2	±3,3 ±6,2
5	КТП-1558п 10/0,4 кВ, РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-1	Т-0,66 Кл.т. 0,5 150/5 Зав. № 055259 Зав. № 055488 Зав. № 055231	_	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1,0 Зав. № 1105120778		Актив- ная Реактив- ная	±1,0 ±2,1	±3,2 ±5,6
6	КТП-1601п 10/0,4 кВ, РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-1	Т-0,66 Кл.т. 0,5 400/5 Зав. № 059061 Зав. № 059113 Зав. № 059116	_	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1,0 Зав. № 1105120857		Актив- ная Реактив- ная	±1,0 ±2,1	±3,2 ±5,6
7	КТП-1602п 10/0,4 кВ, РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-1	Т-0,66 Кл.т. 0,5 300/5 Зав. № 058475 Зав. № 058478 Зав. № 058476	_	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1,0 Зав. № 1105120854		Актив- ная Реактив- ная	±1,0 ±2,1	±3,2 ±5,6
8	в ПКУ-0,4 кВ на ВЛ-1 0,4 кВ оп.5 от КТП- 6320п 10/0,4 кВ РУ-0,4 кВ, с.ш 0,4 кВ	_	_	ПСЧ- 4ТМ.05МК.20 Кл.т. 1,0/2,0 Зав. № 1109123059		Актив- ная Реактив- ная	±1,1 ±2,2	±3,3 ±6,2
9	РП-1 10/0,4 кВ, РУ-10 кВ, ввод 10 кВ от ПС 110/35/10/6 кВ "ЗСК"	ТЛК-10-5 Кл.т. 0,5 75/5 Зав. № 03719 Зав. № 03534	НАМИТ- 10 Кл.т. 0,5 10000/100 Зав. № 2121	СЭТ- 4ТМ.03М Кл.т. 0,2S/0,5 Зав. № 0806120277	HP Pro- Liant DL180R0 6	Актив- ная Реактив- ная	±1,1 ±2,3	±3,0 ±4,7
10	3ТП № 7124 "П" 10/0,4 кВ "Водокачка", РУ-0,4 кВ, ввод 0,4 кВ тр-ра Т-1	Т-0,66 Кл.т. 0,5 400/5 Зав. № 047255 Зав. № 059060 Зав. № 059082	_	ПСЧ- 4ТМ.05МК.04 Кл.т. 0,5S/1,0 Зав. № 1105120822	3aв. № CZJ2360 6HH	Актив- ная Реактив- ная	±1,0 ±2,1	±3,2 ±5,6

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Метрологические характеристики нормированы с учетом ПО;
 - 4. Нормальные условия:
 - параметры сети: напряжение (0.95 1.05) Uн; ток (1.0 1.2) Ін; $\cos \varphi = 0.9$ инд.;
 - температура окружающей среды: (20±5) °C;
 - 5. Рабочие условия эксплуатации:
 - параметры сети для ИК: напряжение (0.98 1.02) Uном; ток (1 1.2) Іном; частота (50 ± 0.15) Γ ц; $\cos \varphi$ =0.9инд;

- параметры сети: диапазон первичного напряжения (0.9 1.1) UH₁; диапазон силы первичного тока (0.05 1.2) IH₁; коэффициент мощности $\cos\varphi(\sin\varphi)$ 0.5 1.0 (0.87 0.5); частота (50 ± 0.4) Γ ц;
- допускаемая температура окружающего воздуха для трансформаторов от минус 40 °C до + 50 °C; для счетчиков от минус 40 °C до + 60 °C;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 6. Погрешность в рабочих условиях указана для тока 0.05 Іном, $\cos \varphi = 0.8$ инд и температуры окружающего воздуха в месте расположения счетчиков электроэнергии от 0 °C до +40 °C;
- 7. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ Р 52322-2005 и ГОСТ Р 52323-2005, в режиме измерения реактивной электроэнергии по ГОСТ Р 52425-2005.
- 8. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 7 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Допускается замена сервера СД и УСВ на однотипные утвержденного типа. Замена оформляется актом в установленном на ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1) порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.
- 9. Все измерительные компоненты системы утверждены и внесены в Федеральиный информационный фонд по обеспечению единства измерений.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- электросчётчик ПСЧ-4ТМ.05МК среднее время наработки на отказ не менее $T=165\ 000\ v$, среднее время восстановления работоспособности $t=2\ v$;
- электросчётчик Меркурий 230 ART среднее время наработки на отказ не менее $T=150\ 000\ \text{ч}$, среднее время восстановления работоспособности $t = 2\ \text{ч}$;
- электросчётчик СЭТ-4ТМ.03М среднее время наработки на отказ не менее $T = 140\ 000\ v$, среднее время восстановления работоспособности $t = 2\ v$;
- УСВ-2 среднее время наработки на отказ не менее T=35000 ч, среднее время восстановления работоспособности t = 2 ч;
- сервер среднее время наработки на отказ не менее T=256554 ч, среднее время восстановления работоспособности t = 0.5 ч.

Надежность системных решений:

- защита от кратковременных сбоев питания сервера с помощью источника бесперебойного питания;
- резервирование каналов связи: информация о результатах измерений может передаваться в организации

 —участники оптового рынка электроэнергии с помощью электронной почты и сотовой связи.

В журналах событий фиксируются факты:

- журнал счётчика:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике;
- журнал сервера:
 - параметрирования;
 - пропадания напряжения;
 - коррекции времени в счетчике и ИВК;
 - пропадание и восстановление связи со счетчиком;

Защищённость применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчётчика;

- промежуточных клеммников вторичных цепей напряжения;
- испытательной коробки;
- сервера;
- защита на программном уровне информации при хранении, передаче, параметрировании:
 - электросчетчика;
 - сервера.

Возможность коррекции времени в:

- электросчетчиках (функция автоматизирована);
- ИВК (функция автоматизирована).

Возможность сбора информации:

- о результатах измерений (функция автоматизирована).

Цикличность:

- измерений 30 мин (функция автоматизирована);
- сбора 30 мин (функция автоматизирована).

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; при отключении питания не менее 10 лет;
- Сервер АИИС хранение результатов измерений, состояний средств измерений не менее 3,5 лет (функция автоматизирована).

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1) типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблица 3 — Комплектность АИИС КУЭ

Наименование	Госреестр №	Кол-во, шт.
Трансформатор тока типа Т-0,66	22656-07	21
Трансформатор тока типа ТЛК-10	9143-06	2
Трансформатор напряжения типа НАМИТ-10	16687-07	1
Счетчик электрической энергии ПСЧ-4ТМ.05МК	46634-11	8
Счетчик электрической энергии Меркурий 230 ART	23345-07	1
Счетчик электрической энергии СЭТ-4ТМ.03М	36697-08	1
Методика поверки		1
Формуляр		1
Руководство по эксплуатации	_	1

Поверка

осуществляется по документу МП 51965-12 «Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1). Измерительные каналы. Методика поверки», утвержденному ГЦИ СИ ФБУ «Курский ЦСМ» в октябре 2012 г.

Средства поверки – по НД на измерительные компоненты:

- Трансформаторы тока в соответствии с ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки»;
- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88 «ГСИ. Трансформаторы напряжения. Методика поверки»;

- ПСЧ-4ТМ.05МК по методике поверки ИЛГШ.411152.167 РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.167 РЭ;
- Меркурий 230 ART по документу "Методика поверки" АВЛГ.411152.021 PЭ1;
- СЭТ-4ТМ.03М по методике поверки ИЛГШ.411152.145 РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145 РЭ;
- УСВ-2 по документу «Усройство синхронизации времени УСВ-2. Методика поверки ВЛСТ 237.00.000МП»;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Руководство по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1).

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1)

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.

ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.

ГОСТ 1983-2001 Трансформаторы напряжения. Общие техничсекие условия

ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия

ГОСТ Р 52322-2005 (МЭК 62053-21:2003) Аппартура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статистические счетчики активной энергии классов точности 1 и 2.

ГОСТ Р 52323-2005 (МЭК 62053-22:2003) Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.

ГОСТ Р 52425-2005 (МЭК 62053-23:2003) Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

МИ 3000-2006 Рекомендация. ГСИ. Системы автоматизированные информационноизмерительные коммерческого учета электрической энергии. Типовая методика поверки.

Руководство по эксплуатации системы автоматизированной информационноизмерительной коммерческого учета ОАО «Оборонэнергосбыт» (по сетям филиала «Приволжский» ОАО «Оборонэнерго», г. Ульяновск, объект №1).

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Техносоюз» ООО «Техносоюз»

Юридический адрес: 105122, г. Москва, Щелковское шоссе, д. 9

Почтовый адрес: 115114, г. Москва, ул. Летниковская, д.11/10, строение 4, 2 этаж

Тел.: (495) 258–45–35 Факс: (495) 363–48–69 E-mail: <u>info@t-souz.ru</u>

www.t-souz.ru

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Курской области»

ФБУ «Курский ЦСМ»

Юридический адрес: 305029, г. Курск, Южный пер., д. 6а

Тел./факс: (4712) 53-67-74, E-mail: kcsms@sovtest.ru

Аттестат аккредитации № 30048-11 действителен до 01 декабря 2016 года.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Μ.П.	«	»	2012 г.

Ф.В. Булыгин