

# ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

# СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.004.A № 48999

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ "Моздок"

ЗАВОДСКОЙ НОМЕР 012

ИЗГОТОВИТЕЛЬ

Открытое акционерное общество "Федеральная сетевая компания Единой энергетической системы" (ОАО "ФСК ЕЭС"), г. Москва

РЕГИСТРАЦИОННЫЙ № 51989-12

ДОКУМЕНТ НА ПОВЕРКУ МП 51989-12

интервал между поверками 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **05 декабря 2012 г.** № **1097** 

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

| Заместитель Руководителя Федерального агентства | Ф.В.Булыгин |
|-------------------------------------------------|-------------|
|                                                 | <br>2012 г. |

Серия СИ № 007670

# ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ «Моздок»

#### Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ «Моздок» (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

#### Описание средства измерений

АИИС КУЭ представляет собой многофункциональную многоуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

- 1-ый уровень измерительные трансформаторы тока и напряжения и счетчики активной и реактивной электроэнергии, вторичные измерительные цепи и технические средства приема-передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-4.
- 2-й уровень информационно-вычислительный комплекс электроустановки (ИВКЭ), включающий в себя устройство сбора и передачи данных (УСПД) RTU-325 (зав. № 000596), устройство синхронизации времени типа 35HVS, коммутационное оборудование.
- 3-й уровень информационно-вычислительный комплекс (ИВК). Этот уровень обеспечивает выполнение следующих функций:
  - сбор информации (результаты измерений, журнал событий);
  - обработку данных и их архивирование;
- хранение информации в базе данных сервера филиала ОАО «Федеральная Сетевая Компания Единой Энергетической Системы» МЭС Юга (филиала ОАО «ФСК ЕЭС» МЭС Юга) не менее 3,5 лет;
  - доступ к информации и ее передачу в организации-участники ОРЭ.

ИВК включает в себя: сервер коммуникационный, сервер архивов и сервер баз данных; устройство синхронизации системного времени на базе приемника GPS; автоматизированных рабочих мест (APM) на базе ПК; каналообразующей аппаратуры; средств связи и передачи данных.

Измерительные каналы (далее – ИК) состоят из трех уровней АИИС КУЭ.

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков поступает на входы УСПД, где осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН.

Результаты измерений счётчиками активной и реактивной электроэнергии собираются УСПД, где производится накопление и хранение результатов измерений по подстанции.

По окончании опроса коммуникационный сервер автоматически передает полученные данные в базу данных сервера БД ИВК ЦСОД МЭС Юга. В сервере БД ИВК ЦСОД МЭС Юга информация о результатах измерений приращений потребленной электрической энергии автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), включающей в себя GPS-приемник сигналов точного времени типа 35HVS. Время УСПД синхронизировано с временем GPS-приемника. При расхождении времени часов УСПД с часами GPS-приемника на  $\pm 1$  с выполняется корректировка часов УСПД. Синхронизация внутренних часов счетчика с часами УСПД осуществляется каждые 30 мин вне зависимости от наличия расхождения часов счетчиков с часами УСПД. Погрешность часов компонентов системы не превышает  $\pm 5$  с.

#### Программное обеспечение

В АИИС КУЭ используется ПО «Альфа-Центр». ПО предназначено для автоматического сбора, обработки и хранения данных, получаемых со счетчиков электроэнергии и УСПД, отображения полученной информации в удобном для анализа и отчетности виде, взаимодействии со смежными системами АИИС КУЭ.

ПО обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами.

Таблица 1 - Метрологические значимые модули ПО

| Наименование<br>программного<br>обеспечения | Наименование программного модуля (идентификационное наименование программного обеспечения) | Наименование<br>файла | Номер версии<br>программного<br>обеспечения | Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода) | Алгоритм вычисления<br>цифрового<br>идентификатора<br>программного<br>обеспечения |
|---------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1                                           | 2                                                                                          | 3                     | 4                                           | 5                                                                                     | 6                                                                                 |
|                                             | программа-<br>планировщик<br>опроса и передачи<br>данных                                   | amrserver.exe         |                                             | 7e87c28fdf5ef9<br>9142ad5734ee7<br>595a0                                              |                                                                                   |
| ПО «Альфа-<br>Центр»                        | драйвер ручного опроса счетчиков и УСПД                                                    | amrc.exe              | v. 11.07.<br>01.01                          | a38861c5f25e2<br>37e79110e1d5d<br>66f37e                                              | MD5                                                                               |
|                                             | драйвер автоматического опроса счетчиков и УСПД                                            | amra.exe              | ı.exe                                       | e8e5af9e56eb7<br>d94da2f9dff64b<br>4e620                                              |                                                                                   |

Продолжение Таблицы 1

| 1                    | 2                                            | 3              | 4                  | 5                                        | 6   |
|----------------------|----------------------------------------------|----------------|--------------------|------------------------------------------|-----|
|                      | драйвер работы с<br>БД                       | cdbora2.dll    |                    | 0ad7e99fa2672<br>4e65102e21575<br>0c655a |     |
| ПО «Альфа-<br>Центр» | библиотека<br>шифрования<br>пароля счетчиков | encryptdll.dll | v. 11.07.<br>01.01 | 0939ce05295fb<br>cbbba400eeae8<br>d0572c | MD5 |
|                      | библиотека сообщений планировщика опросов    | alphamess.dll  |                    | b8c331abb5e34<br>444170eee9317<br>d635cd |     |

Оценка влияния ПО на метрологические характеристики СИ – метрологические характеристики ИК АИИС КУЭ, указанные в таблице 3, нормированы с учетом ПО.

Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ3286-2010.

# Метрологические и технические характеристики

Состав 1-го уровня АИИС КУЭ приведен в таблице 2.

Таблица 2 - Состав 1-го уровня АИИС КУЭ

|     | а 2 - Состав 1-10 уровня 1                                                                        |                                                                                                     | Состав 1-го уровня АИИС КУ                                                                                             | Э                                                                                    |                        |
|-----|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------|
| №ИК | Диспетчерское<br>наименование точки<br>учёта                                                      | Трансформатор тока                                                                                  | Трансформатор<br>напряжения                                                                                            | Счётчик статический трёхфазный переменного тока активной/реактивной энергии          | Вид<br>электроэнергии  |
| 1   | 2                                                                                                 | 3                                                                                                   | 4                                                                                                                      | 5                                                                                    | 6                      |
|     |                                                                                                   | I                                                                                                   | IC 330 кВ «Моздок»                                                                                                     |                                                                                      |                        |
| 1   | ВЛ-110 кВ "Моздок-<br>Терек"(Л-90) с<br>отпайкой на ПС<br>Павлодольская-110<br>точка измерения №7 | ТГФМ-110 II*<br>класс точности 0,5S<br>Ктт=300/5<br>Зав. № 5777; 5768; 5776<br>Госреестр № 36672-08 | НКФ-110-57У1<br>класс точности 0,5<br>Ктн=110000/√3/100/√3<br>Зав. № 966409; 966545;<br>966529<br>Госреестр № 14205-94 | EA02RAL-P4B-4W<br>класс точности 0,2S/0,5<br>Зав. № 01176262<br>Госреестр № 16666-07 | активная<br>реактивная |
| 2   | ВЛ-110 кВ "Моздок-<br>Моздок Тяговая" (Л-<br>109)<br>точка измерения №11                          | ТГФМ-110 II*<br>класс точности 0,5S<br>Ктт=300/5<br>Зав. № 5774; 5769; 5767<br>Госреестр № 36672-08 | НКФ-110-57У1<br>класс точности 0,5<br>Ктн=110000/√3/100/√3<br>Зав. № 966445; 966546;<br>966521<br>Госреестр № 14205-94 | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003638<br>Госреестр № 14555-99  | активная<br>реактивная |
| 3   | ВЛ-110 кВ "Моздок-<br>Моздок Тяговая" (Л-<br>110)<br>точка измерения №10                          | ТГФМ-110 II*<br>класс точности 0,5S<br>Ктт=300/5<br>Зав. № 5781; 5773; 5770<br>Госреестр № 36672-08 | НКФ-110-57У1<br>класс точности 0,5<br>Ктн=110000/√3/100/√3<br>Зав. № 966445; 966546;<br>966521<br>Госреестр № 14205-94 | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003689<br>Госреестр № 14555-99  | активная<br>реактивная |

Продолжение таблицы 2

| 1 | 2                                                               | 3                                                                                                                                    | 4                                                                                                                      | 5                                                                                   | 6                      |
|---|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|
| 4 | ВЛ-110 кВ "Моздок-<br>Моздок 110" (Л-135)<br>точка измерения №9 | ТГФМ-110 II*<br>класс точности 0,5S<br>Ктт=300/5<br>Зав. № 5778; 5779; 5780<br>Госреестр № 36672-08                                  | НКФ-110-57У1<br>класс точности 0,5<br>Ктн=110000/√3/100/√3<br>Зав. № 966445; 966546;<br>966521<br>Госреестр № 14205-94 | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003864<br>Госреестр № 14555-99 | активная<br>реактивная |
| 5 | ВЛ-110 кВ "Моздок-<br>Терская" (Л-137)<br>точка измерения №4    | ТГФМ-110 II*<br>класс точности 0,5S<br>Ктт=300/5<br>Зав. № 5771; 5765; 5775<br>Госреестр № 36672-08                                  | НКФ-110-57У1<br>класс точности 0,5<br>Ктн=110000/√3/100/√3<br>Зав. № 966409; 966545;<br>966529<br>Госреестр № 14205-94 | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003809<br>Госреестр № 14555-99 | активная<br>реактивная |
| 6 | ВЛ-110 кВ<br>"Троицкая-Моздок"<br>(Л-158)<br>точка измерения №6 | ТГФМ-110 II*<br>класс точности 0,5S<br>Ктт=300/5<br>Зав. № 5772; 5782; 5766<br>Госреестр № 36672-08                                  | НКФ-110-57У1<br>класс точности 0,5<br>Ктн=110000/√3/100/√3<br>Зав. № 966409; 966545;<br>966529<br>Госреестр № 14205-94 | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003886<br>Госреестр № 14555-99 | активная<br>реактивная |
| 7 | Т-2 ЗРУ-6 кВ<br>точка измерения №21                             | ТШЛП-10-2 УЗ<br>класс точности 0,5S<br>Ктт=2000/5<br>Зав. № 0568110000010;<br>0568110000011;<br>056811000009<br>Госреестр № 19198-05 | НАМИ-10-95 УХЛ2<br>класс точности 0,5<br>Ктн=6000/100<br>Зав. № 6636<br>Госреестр № 20186-05                           | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003152<br>Госреестр № 14555-99 | активная<br>реактивная |
| 8 | ОПУ-110 ЩСН-0,4<br>кВ ТСН-101<br>точка измерения №23            | ТОП-0,66<br>класс точности 0,5S<br>Ктт=150/5<br>Зав. № 1008744; 109659;<br>1010061<br>Госреестр № 15174-06                           |                                                                                                                        | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003957<br>Госреестр № 14555-99 | активная<br>реактивная |

Продолжение таблицы 2

| 1  | 2                                                    | 3                                                                                                               | 4                                                                                            | 5                                                                                   | 6                      |
|----|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|
| 9  | ОПУ-110 ЩСН-0,4<br>кВ ТСН-102<br>точка измерения №24 | ТОП-0,66<br>класс точности 0,5S<br>Ктт=150/5<br>Зав. № 1010059; 1010687;<br>109652<br>Госреестр № 15174-06      |                                                                                              | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003977<br>Госреестр № 14555-99 | активная<br>реактивная |
| 10 | ОПУ-330 ЩСН-0,4<br>кВ ТСН-103<br>точка измерения №25 | ТШП-0,66 У3<br>класс точности 0,5S<br>Ктт=1000/5<br>Зав. № 1018633; 1018639;<br>1018946<br>Госреестр № 15173-06 |                                                                                              | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003947<br>Госреестр № 14555-99 | активная<br>реактивная |
| 11 | ОПУ-330 ЩСН-0,4<br>кВ ТСН-104<br>точка измерения №26 | ТШП-0,66 УЗ<br>класс точности 0,5S<br>Ктт=1000/5<br>Зав. № 1018638; 1018634;<br>1018637<br>Госреестр № 15173-06 |                                                                                              | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003945<br>Госреестр № 14555-99 | активная<br>реактивная |
| 12 | Ф-2 Автодром ЗРУ-6<br>кВ<br>точка измерения №22      | ТОЛ-10<br>класс точности 0,5S<br>Ктт=600/5<br>Зав. № 6063; 5813<br>Госреестр № 7069-07                          | НАМИ-10-95 УХЛ2<br>класс точности 0,5<br>Ктн=6000/100<br>Зав. № 6636<br>Госреестр № 20186-05 | А1R-4AL-С29-Т<br>класс точности 0,2S/0,5<br>Зав. № 01003594<br>Госреестр № 14555-99 | активная<br>реактивная |

Таблица 3. - Метрологические характеристики ИК (активная энергия)

|                    | лические характериет                                   | Пределы допускаемой относительной погрешности ИК                                                   |                  |                  |                                   |                  |                  |
|--------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------|------------------|-----------------------------------|------------------|------------------|
|                    | Диапазон значений                                      |                                                                                                    |                  |                  | Относительная<br>погрешность ИК в |                  |                  |
| Номер ИК           | силы тока                                              | $\ddot{u}$ Основная относительная погрешность ИК в погрешность ИК, ( $\pm d$ ), % рабочих условиях |                  |                  |                                   |                  |                  |
|                    |                                                        |                                                                                                    | 1 , ( -), , ,    |                  |                                   | уатации, (       | ± <b>d</b> ), %  |
|                    |                                                        | $\cos \varphi =$                                                                                   | $\cos \varphi =$ | $\cos \varphi =$ | $\cos \varphi =$                  | $\cos \varphi =$ | $\cos \varphi =$ |
|                    |                                                        | 1,0                                                                                                | 0,87             | 0,8              | 1,0                               | 0,87             | 0,8              |
| 1                  | 2                                                      | 3                                                                                                  | 4                | 5                | 6                                 | 7                | 8                |
| 1                  | $0.01(0.02) I_{H_1} \le I_1 < 0.05 I_{H_1}$            | 1,8                                                                                                | 2,2              | 2,5              | 1,9                               | 2,3              | 2,6              |
| (TT 0,5S; TH 0,5;  | $0.05I_{H_1} \le I_1 < 0.2I_{H_1}$                     | 1,1                                                                                                | 1,4              | 1,6              | 1,2                               | 1,5              | 1,7              |
| Сч 0,2S)           | $0.2I_{H_1} \le I_1 < I_{H_1}$                         | 0,9                                                                                                | 1,1              | 1,2              | 1,0                               | 1,2              | 1,4              |
| C 1 0,25)          | $I_{H_1} \le I_1 \le 1,2I_{H_1}$                       | 0,9                                                                                                | 1,1              | 1,2              | 1,0                               | 1,2              | 1,4              |
| 2-7, 12            | $0.01(0.02)$ IH <sub>1</sub> $\leq$ I <sub>1</sub> $<$ | 1,8                                                                                                | 2,2              | 2,5              | 1,9                               | 2,3              | 2,6              |
|                    | $0.05I_{H_1} \le I_1 < 0.2I_{H_1}$                     | 1,1                                                                                                | 1,4              | 1,6              | 1,2                               | 1,5              | 1,7              |
| (TT 0,5S; TH 0,5;  | $0.2I_{H_1} \le I_1 < I_{H_1}$                         | 0,9                                                                                                | 1,1              | 1,2              | 1,0                               | 1,2              | 1,4              |
| Сч 0,2S)           | $I_{H_1} \le I_1 \le 1,2I_{H_1}$                       | 0,9                                                                                                | 1,1              | 1,2              | 1,0                               | 1,2              | 1,4              |
| 8 - 11             | $0.01(0.02)I_{H_1} \le I_1 < 0.05I_{H_1}$              | 1,7                                                                                                | 2,1              | 2,4              | 1,8                               | 2,2              | 2,5              |
|                    | $0.05I_{H_1} \le I_1 < 0.2I_{H_1}$                     | 0,9                                                                                                | 1,2              | 1,4              | 1,0                               | 1,3              | 1,5              |
| (TT 0,5S; Сч 0,2S) | $0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$                 | 0,6                                                                                                | 0,8              | 0,9              | 0,8                               | 1,0              | 1,1              |
|                    | $I_{H_1} \le I_1 \le 1,2I_{H_1}$                       | 0,6                                                                                                | 0,8              | 0,9              | 0,8                               | 1,0              | 1,1              |

Таблица 4. - Метрологические характеристики ИК (реактивная энергия)

|                             | Диапазон                                    |                         | пускаемой от                          | носительной п<br>К     | огрешности                                                |
|-----------------------------|---------------------------------------------|-------------------------|---------------------------------------|------------------------|-----------------------------------------------------------|
| Номер ИК                    | значений силы<br>тока                       | Основная от погрешности | носительная<br>ь ИК, (± <i>d</i> ), % | погрешно рабочих       | тельная<br>ость ИК в<br>условиях<br>ции, (± <b>d</b> ), % |
|                             |                                             | $\cos \varphi = 0.87$   | $\cos \varphi = 0.8$                  | $\cos \varphi = 0.87$  | $\cos \varphi = 0.8$                                      |
|                             |                                             | $(\sin \varphi = 0.5)$  | $(\sin \varphi = 0.6)$                | $(\sin \varphi = 0.5)$ | $(\sin \varphi = 0.6)$                                    |
| 1                           | 2                                           | 3                       | 4                                     | 5                      | 6                                                         |
| 1                           | $0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$ | 4,9                     | 4,0                                   | 5,1                    | 4,2                                                       |
| (TT 0,5S; TH 0,5;<br>Сч 0,5 | $0.05I_{H_1} \le I_1 < 0.2I_{H_1}$          | 3,1                     | 2,5                                   | 3,4                    | 2,9                                                       |
| - ΓΟCT P 52425-             | $0.2I_{H_1} \le I_1 < I_{H_1}$              | 2,3                     | 1,9                                   | 2,7                    | 2,3                                                       |
| 2005)                       | $I_{H_1} \le I_1 \le 1,2I_{H_1}$            | 2,3                     | 1,9                                   | 2,7                    | 2,3                                                       |

| Продолжение таблицы 4 | Прод | олжение | таблины | 4 |
|-----------------------|------|---------|---------|---|
|-----------------------|------|---------|---------|---|

| 1                 | 2                                           | 3   | 4   | 5   | 6   |
|-------------------|---------------------------------------------|-----|-----|-----|-----|
| 2 – 7, 12         | $0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$ | 5,1 | 4,1 | 5,5 | 4,5 |
| (TT 0,5S; TH 0,5; | $0.05I_{H_1} \le I_1 < 0.2I_{H_1}$          | 3,1 | 2,5 | 3,3 | 2,7 |
| Сч 0,5)           | $0.2I_{H_1} \le I_1 < I_{H_1}$              | 2,2 | 1,8 | 2,4 | 2,0 |
|                   | $I_{H_1} \le I_1 \le 1,2I_{H_1}$            | 2,2 | 1,8 | 2,3 | 1,9 |
| 0 11              | $0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$ | 4,9 | 3,9 | 5,3 | 4,4 |
| 8 - 11            | $0.05I_{H_1} \le I_1 < 0.2I_{H_1}$          | 2,8 | 2,3 | 3,0 | 2,5 |
| (ТТ 0,5Ѕ; Сч 0,5) | $0.2I_{H_1} \le I_1 < I_{H_1}$              | 1,9 | 1,5 | 2,0 | 1,7 |
|                   | $I_{H_1} \le I_1 \le 1,2I_{H_1}$            | 1,8 | 1,5 | 2,0 | 1,6 |

#### Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовой);
- 2. Нормальные условия эксплуатации:

#### Параметры сети:

- диапазон напряжения (0,99 1,01) Uн;
- диапазон силы тока (0,01 1,2)Ін;
- диапазон коэффициента мощности соѕф (sinф) 0,5 1,0 (0,87 0,5);
- температура окружающего воздуха: ТТ и ТН от минус 40 °C до 50 °C; счетчиков -от 18 °C до 25 °C; ИВКЭ от 10 °C до 30 °C; ИВК от 10 °C до 30 °C;
- частота  $(50 \pm 0.15)$  Гц;
- магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 3. Рабочие условия эксплуатации:

#### Для TT и TH:

- параметры сети: диапазон первичного напряжения (0.9 1.1)Uн<sub>1</sub>; диапазон силы первичного тока (0.01 1.2)Iн<sub>1</sub>; коэффициент мощности  $\cos \phi(\sin \phi)$  0.8 1.0 (0.6 0.5); частота  $(50 \pm 0.4)$   $\Gamma$ <sub>U</sub>;
- температура окружающего воздуха от минус 30 °C до 35 °C.

# Для счетчиков электроэнергии "АЛЬФА", "ЕвроАльфа":

- параметры сети: диапазон вторичного напряжения (0.9 1.1)UH<sub>2</sub>; диапазон силы вторичного тока (0.01 1.2)IH<sub>2</sub>; коэффициент мощности  $\cos \phi(\sin \phi)$  0.8 1.0 (0.6 0.5); частота  $(50 \pm 0.4)$   $\Gamma$ Ц;
- температура окружающего воздуха от 10 °C до 30 °C;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.
- 4. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ 30206-94, ГОСТ Р 52323-2005, в режиме измерения реактивной электроэнергии по ГОСТ 26035-83, ГОСТ Р 52425-2005.
- 5. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 4 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2.

#### Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

• в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены

- средний срок службы и средняя наработка на отказ;
- счетчик среднее время наработки на отказ не менее 35000 часов, среднее время восстановления работоспособности 48 часов;
- УСПД среднее время наработки на отказ не менее 100000 часов, среднее время восстановления работоспособности 1 час.

#### Надежность системных решений:

- резервирование питания УСПД с помощью источника бесперебойного питания и устройства АВР;
- резервирование каналов связи: информация о результатах измерений может передаваться с помощью электронной почты и сотовой связи;
- в журналах событий счетчика и УСПД фиксируются факты:
  - **ü** параметрирования;
  - **ü** пропадания напряжения;
  - **ü** коррекция времени.

#### Защищенность применяемых компонентов:

- наличие механической защиты от несанкционированного доступа и пломбирование:
  - **ü** счетчика;
  - **ü** промежуточных клеммников вторичных цепей напряжения;
  - **ü** испытательной коробки;
  - ü УСПД.
- наличие защиты на программном уровне:
  - ü пароль на счетчике;
  - ü пароль на УСПД;
  - **ü** пароли на сервере, предусматривающие разграничение прав доступа к измерительным данным для различных групп пользователей.

#### Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована).

#### Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях при отключении питания до 5 лет;
- ИВК суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 суток; при отключении питания не менее 3 лет.

#### Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учёта электроэнергии (АИИС КУЭ) ПС 330 кВ «Моздок» типографским способом.

#### Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 - Комплектность АИИС КУЭ

| Наименование                                                    | Кол-во, шт. |
|-----------------------------------------------------------------|-------------|
| 1                                                               | 2           |
| Трансформаторы тока ТГФМ-110 II*                                | 18          |
| Трансформаторы тока ТШЛП-10                                     | 3           |
| Трансформаторы тока ТОП-0,66                                    | 6           |
| Трансформаторы тока шинные ТШП-0,66                             | 6           |
| Трансформаторы тока ТОЛ-10                                      | 2           |
| Трансформаторы напряжения НКФ-110-57У1                          | 6           |
| Трансформаторы напряжения НАМИ-10-95 УХЛ2                       | 3           |
| Устройство сбора и передачи данных (УСПД) RTU-325               | 1           |
| Счётчики электроэнергии многофункциональные типа АЛЬФА          | 13          |
| Счётчики электрической энергии многофункциональные<br>ЕвроАльфа | 1           |
| Методика поверки                                                | 1           |
| Формуляр                                                        | 1           |
| Инструкция по эксплуатации                                      | 1           |

### Поверка

осуществляется по документу МП 51989-12 "Система автоматизированная информационноизмерительная коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ «Моздок». Методика поверки", утвержденному в октябре 2012 г.

Перечень основных средств поверки:

- Трансформаторы тока в соответствии с ГОСТ 8.217-2003 "ГСИ. Трансформаторы тока. Методика поверки";
- Трансформаторы напряжения в соответствии с ГОСТ 8.216-88 "ГСИ. Трансформаторы напряжения. Методика поверки" и/или МИ 2925-2005 "Измерительные трансформаторы напряжения 35...330/√3 кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя";
- Средства измерений МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей»;
- Средства измерений МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей»;
- Счетчики "АЛЬФА" по методике поверки с помощью установок МК6800, МК6801 или образцового ваттметра-счётчика ЦЭ6802;
- Счётчик электрической энергии "ЕвроАльфа" по документу "ГСИ. Счётчики электрической энергии многофункциональные ЕвроАльфа. Методика поверки";
- УСПД RTU-325 по документу "Устройства сбора и передачи данных RTU-325 и RTU-325L. ДЯИМ.466453.005 МП. Методика поверки";
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы с счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01.

#### Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Руководство по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ «Моздок».

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ «Моздок»

- 1. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 2. ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
- 3. ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 4. ГОСТ 7746-2001. Трансформаторы тока. Общие технические условия
- 5. ГОСТ 1983-2001. Трансформаторы напряжения. Общие технические условия.
- 6. ГОСТ Р 52323-2005 (МЭК 62053-22:2003) Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 7. ГОСТ Р 52425-2005 (МЭК 62053-23:2003) Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.
- 8. «Руководство по эксплуатации системы автоматизированной информационноизмерительной коммерческого учета электроэнергии (АИИС КУЭ) ПС 330 кВ «Моздок».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

#### Изготовитель

Открытое акционерное общество "Федеральная сетевая компания Единой энергетической системы"

(ОАО "ФСК ЕЭС")

Адрес: 117630, г. Москва, ул. Академика Челомея, 5А

Тел: +7 (495) 710-93-33 Факс: +7 (495) 710-96-55 E-mail: <u>info@fsk-ees.ru</u> http://www.fsk-ees.ru/

#### Заявитель

Общество с ограниченной ответственностью "Инженерный центр "ЭНЕРГОАУДИТКОНТРОЛЬ" (ООО «ИЦ ЭАК») 123007, г. Москва, ул. 1-ая Магистральная, д. 17/1, стр. 4 Тел. (495) 620-08-38 Факс (495) 620-08-48

# Испытательный центр

Государственный центр испытаний средств измерений ФГУП «ВНИИМС» (ГЦИ СИ ФГУП «ВНИИМС») 119361, г. Москва ул. Озерная, д. 46

тел./факс: 8(495)437-55-77

Регистрационный номер аттестата аккредитации государственного центра испытаний средств измерений № 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

"\_\_\_\_"\_\_\_\_2012 г.