

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.29.007.A № 49420

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система измерительная параметров холодной воды филиала "Красноярская ТЭЦ-3" ОАО "Енисейская ТГК (ТГК-13)"

ЗАВОДСКОЙ НОМЕР 1

ИЗГОТОВИТЕЛЬ

Открытое акционерное общество "Енисейская территориальная генерирующая компания (ТГК-13)" (ОАО "Енисейская ТГК (ТГК-13)"), г.Красноярск

РЕГИСТРАЦИОННЫЙ № 52338-12

ДОКУМЕНТ НА ПОВЕРКУ МП 52338-12

интервал между поверками 2 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **29 декабря 2012 г.** № **1246**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.В.Булыгин
Федерального агентства	
	" " 201 г

№ 008152

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерительная параметров холодной воды филиала «Красноярская ТЭЦ-3» ОАО «Енисейская ТГК (ТГК-13)»

Назначение средства измерений

Система измерительная параметров холодной воды филиала «Красноярская ТЭЦ-3» ОАО «Енисейская ТГК (ТГК-13)» (далее – ИС) предназначена для измерения параметров холодной воды, передачи, обработки и хранения технологической информации об измеренных параметрах для организации измерительного канала в системе коммерческого учета тепловой энергии филиала «Красноярская ТЭЦ-3» ОАО «Енисейская ТГК (ТГК-13)».

Описание средства измерений

Принцип действия ИС основан на преобразовании параметров холодной воды с помощью датчиков в электрические сигналы, передаче этих сигналов по проводным линиям связи, измерении этих сигналов измерительными преобразователями, передаче измеренных значений в цифровом виде по радиоканалу для их последующего цифроаналогового преобразования и передачи в комплексный компонент ИС. В качестве комплексного компонента ИС используется тепловычислитель СПТ961 (Номер в Государственном реестре средств измерений 35477-07). В качестве программного обеспечение ИС используется программного обеспечения тепловычислителя. Настройки тепловычислителя обеспечены защитой от несанкционированного вмешательства.

ИС включает измерительный канал для измерения температуры холодной воды и измерительные каналы избыточного давления на водоводах № 1 и № 2.

Типы датчиков и измерительных преобразователей, используемых в составе измерительных каналов ИС, приведены в таблице 1.

Таблица 1 – Датчики и измерительные преобразователи, используемые в измерительных каналах ИС.

Ranaman 110.	
Тип	Номер в Государственном
	реестре средств измерений
Канал измерения температуры	
Термопреобразователь сопротивления из состава комплекта	
термопреобразователей сопротивления платиновых разностных	18269-99
КТПР-1388	
Модуль измерительный аналогового ввода NL-4RTD	27576-04
Модуль измерительный аналогового вывода NL-4AO	27576-04
Каналы измерения давления	
Датчик давления Метран-100-ДИ	22235-08
Модуль измерительный аналогового ввода NL-8AI	27576-04
Модуль измерительный аналогового вывода NL-4AO	27576-04

ИС обеспечивает:

- измерение температуры холодной воды;
- измерение избыточного давления на водоводах № 1 и № 2;
- передачу измерительной информации в тепловычислитель;
- хранение собранной информации на тепловычислителе;
- формирование отчетов об измеряемых параметрах, неисправностях и нештатных ситуациях в пределах функций, реализуемых тепловычислителем СПТ961.

Аналоговые линии связи между датчиками и измерительными преобразователями NL-4RTD и NL-8AI проложены кабелем контрольным с медными жилами экранированным КВВГэ с площадью сечения не менее 1,5 мм². Длина линий связи не более 25 метров.

Аналоговые линии связи между цифроаналоговыми преобразователями NL-4AO и тепловычислителем проложены кабелем контрольным с медными жилами экранированным КВВГэ с площадью сечения не менее 1,5 мм². Длина линий связи не более 25 метров.

Программное обеспечение В качестве программного обеспечение ИС используется программного обеспечения тепловычислителя. Настройки тепловычислителя обеспечены защитой от несанкционированного вмешательства.

Метрологические и технические характеристики

- Диапазон измерений температуры холодной от 0 °C до 25 °C.
- Пределы допускаемой основной абсолютной погрешности измерения температуры $\pm (0.65+0.005 \cdot t)^{\circ}$ С, где t значение измеряемой температуры, °С.
- Пределы допускаемой дополнительной абсолютной погрешности измерения температуры при отклонении температуры окружающей среды от нормальной области значений в рабочих условиях эксплуатации на каждые $10^{\circ}\text{C} \pm 0.15^{\circ}\text{C}$.
- Диапазон измерений избыточного давления на водоводах от 0,08 до 1,6 МПа.
- Пределы допускаемой основной приведенной к верхнему значению диапазона измерений погрешности измерения избыточного давления в диапазоне:
- От 0,08 до 1,16 МПа $-\pm$ 1,25 %;
- От 0,16 до 1,6 МПа \pm 0,75 %.
- Пределы допускаемой дополнительной приведенной к верхнему значению диапазона измерений погрешности измерения избыточного давления при отклонении температуры окружающей среды от нормальной области значений в рабочих условиях эксплуатации на каждые 10°C в диапазоне:
- от От 0,08 до 1,16– \pm (0,2+0,04 P_{max}/P) %;
- от 0,16 до 1,6 МПа– \pm (0,2+0,05 P_{max}/P) %,

гле:

 ${P_{max}}$ – верхнее значение диапазона измерения давления, МПа;

Р – измеренное значение давления, МПа.

- Рабочие условия эксплуатации составных частей ИС, за исключением датчиков:
 - температура окружающей среды от минус 10°C до 40°C;
 - относительная влажность воздуха не более 95 % при 20 °C;
 - атмосферное давление от 84 кПа до 106,7 кПа.
- Датчики устойчивы к климатическим воздействиям, указанным в их эксплуатационной документации.
- Нормальная область значений температуры окружающей среды (20±5)°С
- Время хранения тепловычислителем информации о значениях измеренных параметров холодной воды по всем измерительным каналам:
- среднечасовых не менее 35 суток;
- среднесуточных не менее 10 месяцев.
- ИС позволяет определять следующие неисправности технических средств:
- отказы тепловычислителя;
- отсутствие электропитания тепловычислителя;
- выход сигнала от датчика за пределы диапазона возможных значений.
- Электропитание ИС осуществляется от сети переменного тока частотой (50 ± 1) Гц напряжением от 187 В до 242 В.

Знак утверждения типа

наносится в левом верхнем углу титульного листа документа «Система измерительная параметров холодной воды филиала «Красноярская ТЭЦ-3» ОАО «Енисейская ТГК (ТГК-13)». Руководство по эксплуатации».

Комплектность средства измерений

В комплект базовой конфигурации ИС входят измерительные, связующие и комплексные компоненты и документация, указанные в таблице 2.

Таблица 2 – Комплектность Системы

Таолица 2 – Комплектность Системы							
Технические средства							
Наименование	Обозначение	Кол-во					
Тепловычислитель СПТ961	РАЖГ.421412.012	1					
Модуль аналогового ввода NL-4RTD	-	1					
Модуль аналогового ввода NL-8AI	-	1					
Модуль аналогового вывода NL-4AO	-	2					
Комплект термопреобразователей сопротивления платиновых	НКГЖ.933.000.00	1					
разностных КТПР-1388							
Датчик давления Метран-100-ДИ модель 1150	СПГК.5070.000.00	2					
Радиомодем Невод-5		3					
Комплект кабелей в соответствии с рабочим проектом 12-СС		1 комп.					
«Автоматизированная система сбора, передачи и обработки							
технологической информации для организации измерительного							
канала в системе коммерческого учета тепловой энергии Крас-							
ноярской ТЭЦ-3»							
Документация							
Система измерительная параметров холодной воды филиала «Красноярская ТЭЦ-3» ОАО							
«Енисейская ТГК (ТГК-13)». Руководство по эксплуатации							
Система измерительная параметров холодной воды филиала «Красноярская ТЭЦ-3» ОАО							
«Енисейская ТГК (ТГК-13)». Методика поверки.							

Поверка

осуществляется по документу МП 52338-12 «Система измерительная параметров холодной воды филиала «Красноярская ТЭЦ-3» ОАО «Енисейская ТГК (ТГК-13)», утвержденному Φ ГУП «СНИИМ» в феврале 2012г.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Система измерительная параметров холодной воды филиала «Красноярская ТЭЦ-3» ОАО «Енисейская ТГК (ТГК-13)». Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к Системе измерительной параметров холодной воды филиала «Красноярская ТЭЦ-3» ОАО «Енисейская ТГК (ТГК-13)»

- 1 ГОСТ Р 8.596-2002. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 Проект 12-СС «Автоматизированная система сбора, передачи и обработки технологической информации для организации измерительного канала в системе коммерческого учета тепловой энергии Красноярской ТЭЦ-3».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений.

осуществлении торговли и товарообменных операций.

TT.						
Из	ВГO	T	OB	ит	гe.	ПЬ

Открытое акционерное общество «Енисейская территориальная генерирующая компания (ТГК-13)» (ОАО «Енисейская ТГК (ТГК-13)»), 660021, г. Красноярск, ул. Богдада, 144а.

Испытательный центр

ГЦИ СИ ФГУП «СНИИМ», 630004,г. Новосибирск, пр. Димитрова, 4, аттестат аккредитации № 30007-09.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.П. «___»____20 г.