

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.022.A № 49447

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ООО "Позитивсервис"

ЗАВОДСКОЙ НОМЕР 001

ИЗГОТОВИТЕЛЬ

ООО "Оператор коммерческого учета" (ООО "ОКУ"), г. Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 52375-13

ДОКУМЕНТ НА ПОВЕРКУ МИ 3000-2006

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 17 января 2013 г. № 18

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.В.Булыгин
Федерального агентства	
	" 2013 г.

№ 008203

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ООО «Позитив-сервис»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ООО «Позитив-сервис» (далее – АИИС КУЭ), расположенная по адресу: Санкт-Петербург, ул. Коли Томчака, д. 28, предназначена для измерения активной и реактивной электрической энергии и мощности, потребленной отдельными технологическими объектами ООО «Позитив-сервис», сбора, обработки, хранения и отображения полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- автоматическое измерение 30-минутных приращений активной и реактивной электрической энергии и средних на 30-минутных интервалах значений активной и реактивной мощности;
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому времени измеренных данных о приращениях электрической энергии и значениях электрической энергии с нарастающим итогом с дискретностью учета 30 мин и данных о состоянии средств измерений;
- хранение результатов измерений в стандартной базе данных в течение не менее
 3.5 лет:
- обеспечение ежесуточного резервирования базы данных на внешних носителях информации;
- разграничение доступа к базам данных для разных групп пользователей и фиксация в отдельном электронном файле всех действий пользователей с базами данных;
- передача результатов измерений, данных о состоянии средств измерений в различных форматах организациям-участникам оптового и розничного рынков электрической энергии (далее внешним организациям);
- предоставление контрольного санкционированного доступа к результатам измерений, данным о состоянии средств измерений со стороны внешних организаций;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройку параметров АИИС КУЭ;
- ведение времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

1-й уровень – уровень измерительно-информационных комплексов точек измерений (ИИК), включающий:

- измерительные трансформаторы тока (ТТ);
- измерительные трансформаторы напряжения (ТН);
- вторичные измерительные цепи;
- многофункциональные электронные счетчики электрической энергии.

2-й уровень – уровень информационно-вычислительного комплекса (ИВК), включающий:

- сервер баз данных (сервер БД);
- устройство синхронизации системного времени;
- технические средства приема-передачи данных (каналообразующая аппаратура);
- программное обеспечение ПО «АльфаЦЕНТР».

Первичные фазные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Счетчик производит измерение действующих (среднеквадратических) значений напряжения (U) и тока и (I) рассчитывает полную мощность $S = U \cdot I$.

Измерение активной мощности счетчиком выполняется путем перемножения мгновенных значений сигналов напряжения (U) и тока (I) и интегрирования полученных значений мгновенной мощности (P) по периоду основной частоты сигналов.

Реактивная мощность (Q) рассчитывается в счетчике по алгоритму $Q = (S^2 - P^2)^{0.5}$.

Средние значения активной и реактивной мощностей рассчитываются путем интегрирования текущих значений Р и Q на 30-минутных интервалах времени.

Цифровой сигнал с выходов счетчиков по проводной линии связи поступает на верхний уровень системы.

На верхнем – втором уровне системы осуществляется сбор и обработка результатов измерений, в том числе расчет активной и реактивной электрической энергии и мощности с учетом коэффициентов трансформации, хранение полученной информации, отображение накопленной информации, оформление справочных и отчетных документов.

Передача результатов измерений и данных о состоянии средств измерений внешним организациям осуществляется сервером БД по выделенному каналу через интернет-провайдера.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). От устройства синхронизации времени УСВ-2 синхронизируются внутренние часы сервера БД, которые в свою очередь при установлении сеанса связи, корректируют внутренние часы счетчиков. Корректировка выполняется при расхождении показаний часов сервера БД и часов счетчиков более чем на 2 с. Погрешность часов компонентов системы (счетчиков, сервера БД) не превышает ± 5 с.

Журналы событий счетчиков электрической энергии отражают: время (дата, часы, минуты) коррекции показаний часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Состав измерительных каналов приведен в табл. 1.

Таблица 1

No	Наименование	Состав измерительных каналов			
ИК	присоединения	TT	TH	Счетчик	Оборудование ИВК
riix	присосдинения	11	111	электрической энергии	(2-й уровень)
1	2	3	4	5	6
1	РП-4030 6кВ, шинный мост 6кВ между СР-1 и ячейкой 25	ТПЛ-10-М У2, 300/5; 0,5S; ГОСТ 7746-2001; Госреестр СИ № 22192-03; Заводской номер: 1779, 1777, 1778	ЗНОЛ.06-6 УЗ, 6000/√3/100/√3; 0,5; ГОСТ 1983-2001; Госреестр СИ № 3344-08; Заводской номер: 4874, 4873, 4870	ЕвроАльфа, EA05RAL-P3B-4; Іном (Імакс) = 5 (10) А; Ином =100 В; класс точности: по активной энергии - 0,5S; по реактивной - 1,0; ГОСТ Р 52323-2005, ГОСТ Р 52425-2005; Госреестр СИ № 16666-07; Заводской номер: 01124116	Каналообразующая аппаратура, УСВ-2, Госреестр СИ № 41681-10, зав. номер: 2706, Сервер БД, ПО «АльфаЦЕНТР»

Продолжение таблицы 1

1	2	3	4	5	6
2	РП-4030 6кВ, шинный мост 6кВ между СР-4 и ячейкой 13	300/5; 0,5S; ГОСТ 7746-2001; Госресстр СИ № 22192-03;	Госреестр СИ № 3344-08;	ЕвроАльфа, EA05RAL-P3B-4; Іном (Імакс) = 5 (10) А; Ином =100 В; класс точности: по активной энергии - 0,5S; по реактивной - 1,0; ГОСТ Р 52323-2005, ГОСТ Р 52425-2005; Госреестр СИ № 16666-07; Заводской номер: 01124117	Каналообразующая аппаратура, УСВ-2, Госресстр СИ № 41681-10, зав. номер: 2706, Сервер БД, ПО «АльфаЦЕНТР»

Примечание:

Допускается замена измерительных трансформаторов и счетчиков электрической энергии на аналогичные, утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в табл. 1. Допускается замена на однотипное утвержденного типа. Замена оформляется актом. Акт хранится совместно с настоящим описанием типа АИИС КУЭ, как его неотъемлемая часть.

Программное обеспечение

В АИИС КУЭ используется программное обеспечение (ПО) «АльфаЦЕНТР».

ПО «АльфаЦЕНТР» осуществляет автоматический параллельный опрос счетчиков электрической энергии с использованием различных типов каналов связи и коммуникационного оборудования, расчет электрической энергии с учетом временных зон, нахождение максимумов мощности для временной (тарифной) зоны, представление данных для анализа в табличном и графическом виде.

ПО «АльфаЦЕНТР» внесено в Государственный реестр средств измерений РФ в составе комплексов измерительно-вычислительных для учета электрической энергии «Альфа ЦЕНТР» под № 44595-10.

Уровень защиты ПО «АльфаЦЕНТР» от непреднамеренных и преднамеренных изменений в соответствии с МИ 3286-2010 – С.

Идентификационные данные ПО «АльфаЦЕНТР» приведены в табл. 2.

Таблица 2

Наименование программного обеспечения	Наименование программ- ного модуля (идентифика- ционное наименование программного обеспече- ния)	Наименова- ние файла	Номер версии программ- ного обес- печения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
	программа-планировщик опроса и передачи данных	Amrserver.exe	3.16.2.0	350FEA312941B2C2E 00A590FB617AE45	
	драйвер ручного опроса счетчиков и УСПД	Amrc.exe	3.16.2.0	529AF5CC49B0C00D C58D808DA82BD8A6	
ПО «Альфа ЦЕНТР»	драйвер автоматического опроса счетчиков и УСПД	Amra.exe	3.16.2.0	2A2C0968FE99124A2 F9813CBD285A6F7	MD5
AC_PE_10	драйвер работы с БД	Cdbora2.dll	3.9.0.0	5F7BED5660C061FC8 98523478273176C	NID 3
	библиотека шифрования пароля счетчиков	encryptdll.dll	2.0.0.0	0939CE05295FBCBBB A400EEAE8D0572C	
	библиотека сообщений планировщика опросов	alphamess.dll	нет данных	B8C331ABB5E344441 70EEE9317D635CD	

Метрологические и технические характеристики

Основные метрологические и технические характеристики АИИС КУЭ приведены в табл. 3.

Таблица 3

Количество ИК коммерческого учета	2
Номинальное напряжение на вводах системы, кВ	6
Отклонение напряжения от номинального, %	±5
Номинальные значения первичных токов ТТ измерительных каналов, А	300
Диапазон изменения тока в % от номинального значения тока	от 2 до 120
Коэффициент мощности, соѕ ф	0,5-1
Диапазон рабочих температур для компонентов системы, °C: — трансформаторов тока, трансформаторов напряжения, счетчиков	от 0 до 30
Пределы допускаемой абсолютной погрешности часов всех компонентов системы, с	±5
Средняя наработка на отказ электрических счетчиков, ч, не менее	80000

Пределы допускаемых относительных погрешностей ИК (измерение активной и реактивной электрической энергии и мощности), %, для рабочих условий эксплуатации АИИС КУЭ приведены в табл. 4.

Таблица 4

№ ИК	Наименование присоединения	Значение соѕф	$2\%I_{\text{\tiny HOM}} \leq I < 5\%I_{\text{\tiny HOM}}$	$5\%I_{\text{hom}} \leq I < 20\%I_{\text{hom}}$	$20\%I_{\text{hom}} \leq I < 100\%I_{\text{hom}}$	$100\% I_{\text{hom}} \leq I \leq 120\% I_{\text{hom}}$
			Активна	я энергия		
2	РП-4030 бкВ, шинный мост бкВ между СР-1 и ячейкой 25 РП-4030 бкВ, шинный мост бкВ между СР-4 и ячейкой 13	1,0	±2,3	±1,7	±1,6	±1,6
2	РП-4030 6кВ, шинный мост 6кВ между CP-1 и ячейкой 25 РП-4030 6кВ, шинный мост 6кВ между CP-4 и ячейкой 13	0,8	±3,1	±2,4	±2,0	±2,0
2	РП-4030 6кВ, шинный мост 6кВ между CP-1 и ячейкой 25 РП-4030 6кВ, шинный мост 6кВ между CP-4 и ячейкой 13	0,5	±5,2	±3,5	±2,8	±2,8
	Реактивная энергия					
2	РП-4030 бкВ, шинный мост бкВ между СР-1 и ячейкой 25 РП-4030 бкВ, шинный мост бкВ между СР-4 и ячейкой 13	0,8	±5,3	±4,4	±3,9	±3,9
2	РП-4030 6кВ, шинный мост бкВ между СР-1 и ячейкой 25 РП-4030 6кВ, шинный мост 6кВ между СР-4 и ячейкой 13	0,5	±4,1	±3,7	±3,4	±3,4

Надежность применяемых в системе компонентов:

- счетчики электрической энергии среднее время наработки на отказ ЕвроАльфа не менее 80000 ч, средний срок службы 30 лет;
- трансформатор тока среднее время наработки на отказ для ТПЛ-10-М У2 не менее 4000000 ч, средний срок службы не менее 30 лет;
- трансформаторы напряжения среднее время наработки на отказ для ЗНОЛ.06-6
 У3, не менее 4000000 ч, средний срок службы не менее 30 лет;
- преобразователь интерфейсов MOXA TCC-80i среднее время наработки на отказ, не менее 2272562 ч;
- модем для коммутируемых линий, среднее время наработки на отказ не менее 50000 ч;
- УСВ-2 среднее время наработки на отказ, не менее 35000 ч;
- сервер БД среднее время наработки на отказ, не менее 100000 ч.

Надежность системных решений:

- резервирование питания компонентов АИИС КУЭ с помощью устройства АВР;
- резервирование каналов связи: для передачи информации внешним организациям организованы два независимых канала связи.

Регистрация в журналах событий компонентов системы времени и даты:

- счетчиками электрической энергии:
 - о попыток несанкционированного доступа;
 - о связи со счетчиком, приведших к каким-либо изменениям данных;
 - о коррекции текущих значений времени и даты;
 - о отсутствие напряжения при наличии тока в измерительных цепях;
 - о перерывов питания;
 - о самодиагностики (с записью результатов).

Защищённость применяемых компонентов

Механическая защита от несанкционированного доступа и пломбирование:

- счетчиков электрической энергии;
- клемм вторичных обмоток трансформаторов тока, напряжения;
- промежуточных клеммников вторичных цепей тока и напряжения;
- испытательных клеммных коробок.

Защита информации на программном уровне:

- установка паролей на счетчиках электрической энергии;
- установка пароля на сервер БД;
- возможность использования цифровой подписи при передачи данных.

Глубина хранения информации:

- счетчик электрической энергии тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток; сохранность данных в памяти при отключении питания – 30 лет;
- Сервер БД хранение результатов измерений и информации о состоянии средств измерений – за весь срок эксплуатации системы.

Знак утверждения типа

наносится на титульный лист эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии и мощности.

Комплектность средства измерений

Наименование	Обозначение (марка и/или тип оборудования, версия ПО)	Кол-во
Трансформаторы напряжения	ТПЛ-10-М У2	6
Трансформаторы напряжения	ЗНОЛ6-6 УЗ	6
Счетчик электрической энергии	EA05RAL-P3B-4	2
Устройство синхронизации системного времени	УСВ-2	1
Преобразователь интерфейсов	MOXA TCC-80 i	1
Модем для коммутируемых линий	AnCom STF/D5020i/105	1
Сервер БД	ПЭВМ (IBM совместимый)	1
Программное обеспечение «АльфаЦЕНТР»	AC_PE_10	1
Инструкция по формированию и ведению базы данных	58317473.422231.1109-02.И4	1
Инструкция по эксплуатации	58317473.422231.1109-02.ИЭ	1
Руководство пользователя	58317473.422231.1109-02 ИЗ	1
Технологическая инструкция	58317473.422231.1109-02.И2	1
Методика измерений	58317473.422231.1109-02МИ	1
Паспорт-формуляр	58317473.422231.1109-02.ПС	1

Поверка

осуществляется в соответствии с документом МИ 3000-2006 «Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки».

Перечень эталонов, применяемых при поверке:

 средства поверки и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в таблице 2 МИ 3000-2006.

Сведения о методиках (методах) измерений

Измерения производятся в соответствии с документом 58317473.422231.1010-01.МИ. «Методика измерений активной и реактивной электрической энергии и мощности при помощи системы автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности OOO «Позитив-сервис». Свидетельство об аттестации № 01.00292.432.00252-2012 от 22.11.2012.

Нормативные и технические документы, устанавливающие требования к АИИС КУЭ ООО «Позитив-сервис»

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 3. МИ 3000-2006 «Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

– осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Оператор коммерческого учета» (ООО «ОКУ»)

Адрес: 190031, г. Санкт-Петербург, набережная реки Фонтанки, д. 113, лит. А. Тел. (812) 740-63-33. Факс (812) 740-63-30.

www.oku.com.ru.

Испытательный центр

ГЦИ СИ ФБУ «Тест-С.-Петербург» зарегистрирован в Государственном реестре под № 30022-10.

190103, г. Санкт-Петербург, ул. Курляндская, д. 1. Тел.: (812) 244-62-28, 244-12-75, факс: (812) 244-10-04.

E-mail: letter@rustest.spb.ru.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

«___»____2013 г.

Ф.В. Булыгин

М.П.

От Испытателя		Рагулин А.И.
_	подпись	_
От Заявителя		
	подпись	расшифровка подписи
От ФГУП «ВНИИМС»		
	подпись	расшифровка подписи
От Управления метрологии		
	подпись	расшифровка подписи