

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

BY.C.31.999.A № 49795

Срок действия до 08 февраля 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Спектрометры атомно-эмиссионные фотоэлектрические многоканальные ЭМАС-200ССД

ИЗГОТОВИТЕЛЬ

ЗАО "Спектроскопические системы", г. Минск, Республика Беларусь

РЕГИСТРАЦИОННЫЙ № 52659-13

ДОКУМЕНТ НА ПОВЕРКУ **МРБ МП.2107-2010**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **08 февраля 2013 г.** № **95**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.В.Булыгиі
Федерального агентства	
	"" 2013 г.

Серия СИ

№ 008630

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Спектрометры атомно-эмиссионные фотоэлектрические многоканальные ЭМАС-200ССД

Назначение средства измерений

Спектрометры атомно-эмиссионные фотоэлектрические многоканальные ЭМАС-200ССД (далее по тексту- спектрометры) предназначены измерения состава и концентрации химических элементов в электропроводящих образцах методом атомно-эмиссионной спектроскопии.

Описание средства измерений

Спектрометры состоят из источника возбуждения спектра (ИВС), монохроматора, многоканального фотоприемного устройства (МФПУ), состоящего из фотоприемного блока (БФП) и блока питания (БП), персональной электронной вычислительной машины (ПЭВМ) и принтера (ПТ).

Принцип действия спектрометров основан на методе эмиссионного спектрального анализа. Подготовленную к анализу пробу анализируемого вещества помещают в камеру разряда источника возбуждения спектров. Под действием электрического разряда анализируемое вещество испаряется и его атомы возбуждаются в высокотемпературной области разряда. Свет, излучаемый атомами, собирается оптической системой и попадает в монохроматор, где происходит его разложение по спектральным составляющим с последующей математической обработкой эмиссионных спектров.

Спектрометр рассчитан на работу в закрытых помещениях при температуре окружающего воздуха от 15 до 30 °C и относительной влажности не выше 80 % при температуре 25 °C и более низких температурах без конденсации влаги. Наличие агрессивных газов и паров кислот в помещении недопустимо.

Рисунок 1- Спектрометр атомно-эмиссионный фотоэлектрический многоканальный ЭМАС-200ССД - общий вид

^{*-} Источник возбуждения спектров с камерой разряда (ИВС);

^{**-} Многоканальное фотоприемное устройство (МФПУ) со спектральным блоком и блоком питания;***- ПЭВМ.

Рисунок 2 – Спектрометр атомно-эмиссионный фотоэлектрический многоканальный ЭМАС-200ССД, задняя панель, *-место пломбировки

Программное обеспечение

В спектрометрах используется встроенное программное обеспечение (далее - ΠO) "n-VisiOn".

Доступ к метрологически значимой части обеспечен с помощью ограничения прав доступа.

Идентификационные данные ПО приведены в таблице 1.

Таблица 1.

Наименование	Идентифика-	Номер версии	Цифровой идентифи-	Алгоритм вычис-
программного	ционное на-	(идентификаци-	катор программного	ления цифрового
обеспечения	именование	онный номер)	обеспечения (кон-	идентификатора
	программного	программного	трольная сумма ис-	программного
	обеспечения	обеспечения	полняемого кода)	обеспечения
Универсальная спектрометрическая система "n-VisiOn"	101178705.001 ПО "n-VisiOn"	4.0.12.660	daa11d59cb57cbe478b 1e4edcf105de3 по файлу *nVision.exe	MD5

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» согласно МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики прибора приведены в таблице 2.

Таблица 2

Спектральный диапазон, нм	от 200 до 600
Погрешность установки спектрометра по шкале длин волн, нм, не более	$\pm 0,05$
Стабильность регистрации излучения от стабилизированного источника излу-	
чения, %, не более	1

Количество приемных каналов не менее	1024
Ширина анализируемого спектрального интервала нм, не более:	
с дифракционной решеткой 1200 штрихов/мм;	60 ± 1
с дифракционной решеткой 1800 штрихов/мм;	40 ± 1
с дифракционной решеткой 2400 штрихов/мм;	30 ± 1
с дифракционной решеткой 3600 штрихов/мм;	20 ± 1
Предел относительного среднего квадратического отклонения (ОСКО) резуль-	
татов измерения массовой доли элементов, %	5
Потребляемая мощность, кВ·А, не более	8,5
Масса спектрометра, кг, не более	500
Средний срок службы, лет, не менее	5
Напряжение питания переменного тока	
от однофазной сети напряжением, В	230
от внешней трехфазной сети напряжением, В	400
частотой, Гц.	50
Условия эксплуатации:	
температура окружающего воздуха, °С	15÷35
относительная влажность воздуха, % не более	80
атмосферное давление, мм рт. ст.	760 ± 60

Знак утверждения типа

средства измерений наносится типографским способом на самоклеющуюся этикетку, которая наклеивается на переднюю панель корпуса блока питания МФПУ в соответствии с конструкторской документацией, а также типографским способом на титульный лист руководства по эксплуатации.

Комплектность средства измерений

Комплект поставки представлен в таблице 3.

Таблица 3

Tuomingu 5		
Наименование	Количество	
Источник возбуждения спектра: генератор универсальный УГЭ-4 в комплект-	1	
ности изготовителя согласно паспорта		
Спектральный блок: монохроматор МДР-23У в комплектности изготовителя		
согласно паспорта		
ПЭВМ в комплектности изготовителя согласно паспорта		
Многоканальное фотоприемное устройство (МФПУ), в том числе:		
фотоприемное устройство		
блок питания		
Кабель интерфейса (2×RS232C + Centronix)	1	
Оптический кабель внешнего запуска генератора		
Программное обеспечение на дискете	1	
Методики выполнения измерений на дискете	1	
Паспорт 101178705.001 ПС	1	
«Спектрометры атомно-эмиссионные фотоэлектрические многоканальные	1	
ЭМАС-200ССД. Методика поверки МРБ МП.2107-2010»		
Руководство по эксплуатации 101178705.001 РЭ	1	
T .		

Примечания:

- 1. ПЭВМ и принтер поставляют по желанию заказчика.
- 2. Генератор УГЭ-4, монохроматор МДР-23У, ПЭВМ и ПТ могут быть заменены на другие, удовлетворяющие требованиям 1.1.12 ТУ ВҮ 101178705.001-2010

Поверка

осуществляется по документу «Спектрометры атомно-эмиссионный фотоэлектрические многоканальные ЭМАС-200ССД. Методика поверки МРБ МП.2107-2010», утверждённому РУП «Белорусский государственный институт метрологии» 16 декабря 2010 г.

Основные средства поверки:

- 1 Образец меди МО или М1 по ГОСТ 859-2001.
- 2 ГСО состава сплава медно –цинкового сплава типа ЛС (комплект М96, М136) ГСО 2667-83 ГСО 2671-83.
- 3 Мультиметр цифровой типа U1242B, переменное напряжение до 1000 B, базовая погрешность 0,1% .
- 4 Измеритель сопротивления изоляции модели 4104 IN, верхний предел измерения 500 МОм, напряжение 500 В, напряжения постоянного тока 10 кВ.

Сведения о методиках (методах) измерений

Руководство по эксплуатации «Спектрометры атомно-эмиссионный фотоэлектрические многоканальные ЭМАС-200ССД», п. 7 «порядок работы».

Нормативные документы, устанавливающие требования к анализаторам ТУ ВҮ 101178705.001-2010 «Спектрометр атомно-эмиссионный фотоэлектрический многоканальный ЭМАС-200ССД».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

ЗАО «Спектроскопические системы»

Адрес изготовителя: Республика Беларусь, 220024, г. Минск, ул. Кижеватова, д.7, корп. 2, оф.12

Тел/факс. Тел./факс тел/факс (017) 212-99-90

e-mail: e-mail: spectrosys@iptel.by

Экспертиза проведена

ФГУП «ВНИИОФИ»

Адрес: 119361, г. Москва, ул. Озерная, 46

тел. 437-56-33, факс 437-31-47

E-mail: <u>vniiofi@vniiofi.ru</u> caйт: www.vniiofi.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Бу	ЛЫГИН
---------	-------

Μ.П.	«	>>	2013 г