ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино» с Изменением № 1 - АИИС КУЭ ПС 500/220/110/20 кВ «Чагино» с Изменением № 1

Назначение средства измерений

Настоящее описание типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино» с Изменением № 1 – АИИС КУЭ ПС 500/220/110/20 кВ «Чагино» с Изменением № 1 является обязательным дополнением к описанию типа системы автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино» - АИИС КУЭ ПС 500/220/110/20 кВ «Чагино», свидетельство об утверждении типа RU.E.34.004.А № 50369 от 08.04.2013 г., регистрационный № 53178-13, и включает в себя описание дополнительных измерительных каналов, соответствующих точкам измерения № 50, № 58, № 77, № 78, № 79, № 80, № 81, № 82.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино» с Изменением № 1 - АИИС КУЭ ПС 500/220/110/20 кВ «Чагино» с Изменением № 1 (далее - АИИС КУЭ) предназначена для измерения активной и реактивной электрической энергии, а также для автоматизированного сбора, обработки, хранения, отображения и передачи информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

АИИС КУЭ включает в себя следующие уровни:

1-й уровень состоит из измерительных трансформаторов тока (далее – TT) класса точности 0,5S по ГОСТ 7746-2001, измерительных трансформаторов напряжения (далее – TH) класса точности 0,5 по ГОСТ 1983-2001 и счетчиков активной и реактивной электроэнергии типа A1800 класса точности 0,5S и 0,2S по ГОСТ Р 52323-05 в части активной электроэнергии и класса точности 1,0 и 0,5 в части реактивной электроэнергии, вторичных электрических цепей и технических средств приема – передачи данных.

2-й уровень - измерительно-вычислительный комплекс электроустановки (далее – ИВКЭ), созданный на базе устройств сбора и передачи данных (далее – УСПД), устройства синхронизации времени и коммутационного оборудования.

УСПД типа RTU-325H обеспечивает сбор данных со счетчиков, расчет (с учетом коэффициентов трансформации TT и TH) и архивирование результатов измерений электрической энергии в энергонезависимой памяти с привязкой ко времени, передачу этой информации в информационно-вычислительный комплекс (далее — ИВК). Полученная информация накапливается в энергонезависимой памяти УСПД. Расчетное значение глубины хранения архивов составляет не менее 35 суток. Точное значение глубины хранения информации определяется при конфигурировании УСПД.

- 3-й уровень ИВК обеспечивает выполнение следующих функций:
 - сбор информации от ИВКЭ (результаты измерений, журнал событий);
 - обработку данных и их архивирование;
- хранение информации в базах данных серверов ОАО «Федеральная Сетевая Компания Единой Энергетической Системы» (ОАО «ФСК ЕЭС») не менее 3,5 лет;
- доступ к информации и ее передачу в организации-участники оптового рынка электроэнергии (далее ОРЭ).

ИВК состоит из центра сбора и обработки данных (далее – ЦСОД) филиала ОАО «ФСК ЕЭС» - МЭС Центра и комплекса измерительно-вычислительного АИИС КУЭ ЕНЭС (Метроскоп) (далее – ИВК АИИС КУЭ ЕНЭС (Метроскоп)), а также устройств синхронизации времени УССВ-35HVS, аппаратуры приема-передачи данных и технических средств для организации локальной вычислительной сети (далее - ЛВС), разграничения прав доступа к информации. В ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Центра используется программное обеспечение (ПО) «АльфаЦЕНТР», а в ИВК АИИС КУЭ ЕНЭС (Метроскоп) — специализированное программное обеспечение Автоматизированная информационно-измерительная система коммерческого учета электроэнергии (АИИС КЭ) ЕНЭС (Метроскоп) (далее – СПО «Метроскоп»).

К серверам ИВК подключен коммутатор Ethernet. Также к коммутатору подключено автоматизированное рабочее место (далее – APM) персонала.

Для работы с АИИС КУЭ на уровне подстанции предусматривается организация АРМ подстанции.

Измерительные каналы (далее – ИК) АИИС КУЭ включают в себя 1-й, 2-й и 3-й уровни АИИС КУЭ.

Первичные фазные токи и напряжения преобразуются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. Первичный ток в счетчиках измеряется с помощью измерительных трансформаторов тока, имеющих малую линейную и угловую погрешность в широком диапазоне измерений. В цепи трансформаторов тока установлены шунтирующие резисторы, сигналы с которых поступают на вход измерительной микросхемы. Измеряемое напряжение каждой фазы через высоколинейные резистивные делители измерительную подается непосредственно на микросхему. Измерительная осуществляет выборки входных сигналов токов и напряжений по каждой фазе, используя встроенные аналого-цифровые преобразователи, и выполняет различные вычисления для получения всех необходимых величин. C выходов измерительной микросхемы микроконтроллер поступают интегрированные по времени сигналы активной и реактивной энергии. Микроконтроллер осуществляет дальнейшую обработку полученной информации и накопление данных в энергонезависимой памяти, а также микроконтроллер осуществляет управление отображением информации на ЖКИ, выводом данных по энергии на выходные импульсные устройства и обменом по цифровому интерфейсу. Измерение максимальной мощности счетчик осуществляет по заданным видам энергии. Усреднение мощности происходит на интервалах, длительность которых задается программно.

УСПД автоматически проводит сбор результатов измерений и состояние средств измерений со счетчиков электрической энергии (один раз в 30 минут) по проводным линиям связи (интерфейс RS-485).

ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Центра автоматически опрашивает УСПД уровня ИВКЭ. Опрос УСПД выполняется по основному каналу связи - волоконно-оптической линии связи (далее – ВОЛС). При отказе основного канала связи опрос УСПД выполняется по резервному каналу связи, организованному на базе сотовой сети связи стандарта GSM.

В ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Центра информация о результатах измерений автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске.

В автоматическом режиме ИВК АИИС КУЭ ЕНЭС (Метроскоп) опрашивает ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Центра по протоколу ТСР/IР по единой цифровой сети связи энергетики (ЕЦССЭ) — один раз в 30 минут. ИВК АИИС КУЭ ЕНЭС (Метроскоп) осуществляет соединение и получение данных с ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Центра.

В ИВК АИИС КУЭ ЕНЭС (Метроскоп) информация о результатах измерений автоматически формируется в архивы и сохраняется на глубину не менее 3,5 лет по каждому параметру. Сформированные архивные файлы автоматически сохраняются на «жестком» диске.

Один раз в сутки ИВК АИИС КУЭ ЕНЭС (Метроскоп) автоматически формирует файл отчета с результатами измерений при помощи СПО «Метроскоп», в формате XML, и автоматически передает его в интегрированную автоматизированную систему управления коммерческим учетом (далее - ИАСУ КУ) ОАО «АТС» и всем заинтересованным организациям-

участникам ОРЭ, через IP сеть передачи данных ОАО «ФСК ЕЭС», с доступом в глобальную компьютерную сеть Internet.

Каналы связи не вносят дополнительных погрешностей в измеренные значения энергии и мощности, которые передаются от счетчиков в ИВК, поскольку используется цифровой метод передачи данных.

Система обеспечения единого времени (далее - СОЕВ) выполняет законченную функцию измерений времени и формируется на всех уровнях АИИС КУЭ.

Контроль времени в часах счетчиков АИИС КУЭ автоматически выполняет УСПД, при каждом сеансе опроса (один раз в 30 минут), корректировка часов счетчиков выполняется автоматически в случае расхождения времени часов в счетчике и УСПД на величину более ± 1 с.

Корректировка часов УСПД выполняется автоматически устройством синхронизации времени УССВ-GARMIN GPS 17N, принимающего сигналы точного времени от спутников глобальной системы позиционирования (GPS). Корректировка часов УСПД происходит ежесекундно.

В ИВК ЦСОД МЭС Центра и ИВК АИИС КУЭ ЕНЭС (Метроскоп) используется устройство синхронизации времени УССВ-35HVS, принимающего сигналы точного времени от спутников глобальной системы позиционирования (GPS). Корректировка часов серверов ИВК выполняется ежесекундно по сигналам УССВ-35HVS. При нарушении связи между УСПД и подключенного к нему УССВ-GARMIN GPS 17N, время часов УСПД корректируется от сервера ИВК автоматически в случае расхождения часов УСПД и ИВК на величину более \pm 1 с.

При длительном нарушении работы канала связи между УСПД и счетчиками на длительный срок, время часов счетчиков корректируется от переносного инженерного пульта. При снятии данных с помощью переносного инженерного пульта через оптический порт счётчика производится автоматическая подстройка часов опрашиваемого счётчика.

Погрешность часов компонентов системы не превышает ±5 с.

Защита от несанкционированного доступа предусмотрена на всех уровнях сбора, передачи и хранения коммерческой информации и обеспечивается совокупностью технических и организационных мероприятий.

Журналы событий счетчика электроэнергии и УСПД отражают время (дата, часы, минуты) коррекции часов указанных устройств и расхождение времени в секундах, корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Программное обеспечение

Таблица 1 – Идентификационные данные СПО «Метроскоп», установленного в ИВК АИИС КУЭ ЕНЭС (Метроскоп) и ПО «АльфаЦЕНТР», установленного в ЦСОД филиала ОАО «ФСК ЕЭС» - МЭС Центра

Идентификационное наименование ПО	Номер версии (идентификационный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм цифрового идентификатора ПО
СПО (АИИС КУЭ) ЕНЭС (Метроскоп)	1.00	289aa64f646cd3873804db5fbd653679	MD5
"Amrserver.exe"	12.05.01.01	22262052a42d978c9c72f6a90f124841	MD5
"Amrc.exe"	12.05.01.01	1af7a02f7f939f8a53d6d1750d4733d3	MD5
"Amra.exe"	12.05.01.01	15a7376072f297c8b8373d815172819f	MD5
"Cdbora2.dll"	12.05.01.01	58de888254243caa47afb6d120a8197e	MD5
"encryptdll.dll"	12.05.01.01	0939ce05295fbcbbba400eeae8d0572c	MD5
"alphamess.dll"	12.05.01.01	b8c331abb5e34444170eee9317d635cd	MD5

Метрологические характеристики ИК АИИС КУЭ, указанные в таблице 2 нормированы с учетом ПО;

Защита программного обеспечения обеспечивается применением электронной цифровой подписи, разграничением прав доступа, использованием ключевого носителя. Уровень защиты – «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Состав 1-го уровня ИК АИИС КУЭ приведен в таблице 2. Уровень ИВКЭ АИИС КУЭ реализован на базе устройства сбора и передачи данных УСПД RTU-325H (Госреестр № 44626-10, зав. № 003959), а уровень ИВК на базе Комплекса измерительновычислительного АИИС КУЭ ЕНЭС (Метроскоп) (Госреестр № 45048-10).

Таблица 2 – Состав 1-го уровня ИК и метрологические характеристики ИК

	л измерений		·	ительные компоненты				Метрологи	ческие хара	актеристики
Номер ИК	Наименование объекта учета, диспетчерское наименование присоединения	Вин СИ	класс точности, коэффициент трансформации, № Госреестра СИ или свидетельства о поверке	Обозначение, тип	Заводской номер	$K_{\mathrm{TT}} \cdot K_{\mathrm{TH}} \cdot K_{\mathrm{C4}}$	Наименование измеряемой величины	Вид энергии	Основная относительная погрешность ИК, (±δ) %	Относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm \delta)$ %
1	2		3	4	5	6	7	8	9	10
50	КРУ – 20 кВ, секция К2К, яч. 206 (ОАО «Завод специальных монтажных изделий» Ввод 1)	Счетчик ТН ТТ	KT = 0,5S KTT = 600/5 № 54070-13 KT = 0,5 KTH = 20000/√3: 100/√3 № 54069-13 KT = 0,5S/1,0 KCH = 1 № 31857-06	A TPU 60.23 B TPU 60.23 C TPU 60.23 A TJP 6.0 B TJP 6.0 C TJP 6.0 A1805RAL-P4-GB-DW-4	1VLT5107036910 1VLT5107036906 1VLT5107036914 1VLT5207013637 1VLT5207013638 1VLT5207013639	24000	Энергия активная, $W_{ m P}$ Энергия реактивная, $W_{ m Q}$	Активная Реактивная	1,2 2,5	5,0 4,3

1	олжение таол 2		3	4	5	6	7	8	9	10
	секция К4К, яч. 404 ециальных монтажных ий» Ввод 2)		KT = 0,5S KTT = 600/5 № 54070-13 KT = 0,5 KTH = 20000/√3:	A TPU 60.23 B TPU 60.23 C TPU 60.23 A TJP 6.0 B TJP 6.0	1VLT5107036896 1VLT5107036886 1VLT5107036876 1VLT5207013640 1VLT5207013641		$W_{ m P}$			
	ция К4 альных Ввод		100/√3 № 54069-13	C TJP 6.0	1VLT5207013642	00	ивная, тивная	Активная	1,2	5,0
58	КРУ – 20 кВ, секция К4К, яч. 404 (ОАО «Завод специальных монтажных изделий» Ввод 2)	Счетчик	Кт = 0,5S/1,0 Ксч = 1 № 31857-06	A1805RAL-P4-GB- DW-4	01195679	24000	Энергия активная, $ m W_{P}$ Энергия реактивная, $ m W_{Q}$	Реактивная	2,5	4,3
	05A)	TT	K _T = 0,5S K _{TT} = 600/5 № 36415-07	A TPU 6 B TPU 6 C TPU 6	1VLT5112055420 1VLT5112055418 1VLT5112055411					
	г К2К, яч. 2 аб» Ввод 1	ТН	KT = 0,5 KTH = 20000/√3: 100/√3 № 54069-13	A TJP 6.0 B TJP 6.0 C TJP 6.0	1VLT5207013637 1VLT5207013638 1VLT5207013639		ная, W _P вная, W _Q		1.1	4.0
77	КРУ – 20 кВ, секция К2К, яч. 205А (ООО «Техметснаб» Ввод 1)	Счетчик	Kт = 0,2S/0,5 Ксч = 1 № 31857-11	A1802RALX-P4- GB-DW-4	01248049	24000	Энергия активная, $\mathrm{W_{P}}$ Энергия реактивная, $\mathrm{W_{Q}}$	Активная Реактивная	1,1 2,3	4,8 2,7

1	олжение таол 2	пцы 2	3	4	5	6	7	8	9	10
			$K_T = 0.5S$	A TPU 6	1VLT5112055413					
	4	TT	$K_{TT} = 600/5$	B TPU 6	1VLT5112055421					
	047	·	№ 36415-07	C TPU 6	1VLT5112055422					
	н. 3		$K_T = 0,5$	A TJP 6.0	1VLT5207013649		0			
	, я ^г Вво	TH	Ктн = $20000/\sqrt{3}$:	B TJP 6.0	1VLT5207013650		$^{ m W_P}$			
	я КЗК 1аб» Е	Γ	100/√3 № 54069-13	C TJP 6.0	1VLT5207013651		вная, `	Активная	1,1	4,8
78	TCF					24000	ТИ	Активная	1,1	4,0
78	КРУ – 20 кВ, секция КЗК, яч. 304А (ООО «Техметснаб» Ввод 2)	ЧИК	$K_T = 0.2S/0.5$	A1802RALX-P4-		24(Энергия активная, W _P Энергия реактивная, W _Q	Реактивная	2,3	2,7
	КРУ – 20 кВ (ООО «Т	Счет	Ксч = 1 № 31857-11	GB-DW-4	01248050		ЭнС Энс			
			KT = 0.5S	A TPU 6	1VLT5112055414					
	0 1e	II	$K_{TT} = 600/5$	B TPU 6	1VLT5112055408					
	110		№ 36415-07	C TPU 6	1VLT5112055419					
	яч.		$K_T = 0.5$	A TJP 6.0	1VLT5207013646	-	P 10			
	К, еді	ТН	Kтн = 20000/√3:	B TJP 6.0	1VLT5207013647		W, I, W			
	секция К1К, яч. юльное предпри ич» Ввод 1)		100/√3 № 54069-13	C TJP 6.0	1VLT5207013648		вная, ивная	Активная	1,1	4,8
79	жи 15н » Е					24000	кти 1кт	ТКТИВПИЯ	1,1	1,0
	– 20 кВ, «Муком «Русі	Счетчик	Kт = 0,2S/0,5 Ксч = 1	A1802RALX-P4- GB-DW-4	01248053	24	Энергия активная, W _P Энергия реактивная, W _Q	Реактивная	2,3	2,7
	KPY (00C	Cr	№ 31857-11	2			ζ·)			

1	олжение таол. 2	пды 2	3		4	5	6	7	8	9	10
			$K_T = 0.5S$	A	TPU 6	1VLT5112055410					
	_ o	LL	$K_{TT} = 600/5$	В	TPU 6	1VLT5112055415					
	209 ятие	L	№ 36415-07	С	TPU 6	1VLT5112055412					
	яч. Э		$K_T = 0,5$	A	TJP 6.0	1VLT5207013637		0			
	Х, я хип)	ПН	Ктн = $20000/\sqrt{3}$:	В	TJP 6.0	1VLT5207013638		\mathbf{W}_{P}			
	секция К2К, юльное пред ич» Ввод 2)	T	100/√3 № 54069-13	C	TJP 6.0	1VLT5207013639		вная, Т	Активная	1,1	4,8
80	КЦИ 15Н(24000	ТИ	Активная	1,1	4,0
	КРУ – 20 кВ, секция К2К, яч. 209 (ООО «Мукомольное предприятие «Русич» Ввод 2)	гчик	Кт = 0,2S/0,5 Ксч = 1	A	1802RALX-P4-	01248048	24(Энергия активная, $\mathrm{W_{P}}$ Энергия реактивная, $\mathrm{W_{Q}}$	Реактивная	2,3	2,7
	КРУ – 20 к (ООО «Мук «Р	Счел	© Kc4 = 1 № 31857-11		GB-DW-4			нЄ Є			
			KT = 0.5S	A	TPU 6	1VLT5112055417					
	o Je	LL	$K_{TT} = 600/5$	В	TPU 6	1VLT5112055407					
	310		№ 36415-07	C	TPU 6	1VLT5112055416					
	яч.		$K_T = 0.5$	A	TJP 6.0	1VLT5207013649		P 10			
	К, едп	$\Pi\Pi$	Kтн = 20000/√3:	В	TJP 6.0	1VLT5207013650		W _]			
	секция КЗК, яч. юльное предпри ич» Ввод 3)		100/√3 № 54069-13	С	TJP 6.0	1VLT5207013651	(вная, ивная	Активная	1,1	4,8
81	жир 15 н » Е						24000	кти акт)	ТКТИВПИЛ	1,1	1,0
	КРУ – 20 кВ, секция КЗК, яч. 310 (ООО «Мукомольное предприятие «Русич» Ввод 3)	чик	$K_T = 0.2S/0.5$	A	1802RALX-P4-	01040051	24	Энергия активная, $ m W_{P}$ Энергия реактивная, $ m W_{Q}$	Реактивная	2,3	2,7
	KPY – 3	Счетчик	Ксч = 1 № 31857-11		GB-DW-4	01248051		нС			

1	2		3		4	5	6	7	8	9	10
			$K_T = 0.5S$	Α	TPU 6	1VLT5112055409					
	e e	TT	KTT = 600/5	В	TPU 6	1VLT5112055405					
	409 ятиє		№ 36415-07	C	TPU 6	1VLT5112055406					
	яч. прис		$K_T = 0.5$	Α	TJP 6.0	1VLT5207013640		~			
	, ⋤	ТН	Ктн = $20000/\sqrt{3}$:	В	TJP 6.0	1VLT5207013641		$^{ m W_P}_{ m V}$			
	К4К, пред	Ι	$100/\sqrt{3}$	С	TJP 6.0	1VLT5207013642					
			№ 54069-13		131 0.0	1 1 1 1 1 2 0 7 0 1 3 0 4 2		ВНЗ	Активная	1,1	4,8
82	- 20 кВ, секция «Мукомольное «Русич» Вво						24000	Энергия активная, ` Энергия реактивная,	Активная	1,1	4,0
02) кВ, секі Іукомоль «Русич»						24	реа	Реактивная	2,3	2,7
	кВ, ⁄ков Рус							ГИЯ 1Я]	ТСИКТИВПИЯ	2,3	2,7
	20 k Myı «F	Счетчик	$K_T = 0.2S/0.5$		A1802RALX-P4-			Энергия з			
	1 '	eTu	Ксч = 1	-	GB-DW-4	01248052		Эн			
	× 00	Сч	№ 31857-11		OD-D W -4			(1)			
	KPY .										
	•										

Примечания:

- 1. В Таблице 2 в графе «Относительная погрешность ИК в рабочих условиях эксплуатации, $(\pm\delta)$ %» приведены границы погрешности результата измерений посредством ИК при доверительной вероятности P=0,95, $\cos\phi$ =0,5 ($\sin\phi$ =0,87), токе ТТ, равном 2 % от Іном и температуре окружающего воздуха в месте расположения счетчиков электроэнергии от 15 °C до 30 °C.
- 2. Нормальные условия эксплуатации:
- параметры питающей сети: напряжение (220 ± 4.4) B; частота (50 ± 0.5) Гц;
- параметры сети: диапазон напряжения (0.98 1.02)U_н; диапазон силы тока (1.0 1.2)I_н; коэффициент мощности $\cos \phi (\sin \phi) 0.87(0.5)$; частота (50 ± 0.5) Γ Ц;
- температура окружающего воздуха: TT от минус 40 °C до 50 °C; TH от минус 40 °C до 50 °C; счетчиков: (23 ± 2) °C; УСПД от 15 °C до 25 °C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (750 ± 30) мм рт.ст. $((100 \pm 4) \text{ к}\Pi \text{a})$
- 3. Рабочие условия эксплуатации:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения $(0.9-1.1)U_{\rm H1}$; диапазон силы первичного тока $(0.01-1.2)I_{\rm H1}$; диапазон коэффициента мощности $\cos\phi$ ($\sin\phi$) 0.5-1.0 (0.6-0.87); частота (50 ± 0.5) Γ Ц;
- температура окружающего воздуха от 15 °C до 30 °C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (750 ± 30) мм рт.ст. $((100 \pm 4) \text{ кПа})$

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения $(0.9 1.1)U_{H2}$; диапазон силы вторичного тока $(0.02 \ (0.01 \ при \ cos\phi=1) 1.2)I_{H2}$; диапазон коэффициента мощности $\cos\phi$ ($\sin\phi$) $0.5 1.0 \ (0.6 0.87)$; частота $(50 \pm 0.5) \ \Gamma$ ц;
- магнитная индукция внешнего происхождения 0,5 мТл;
- температура окружающего воздуха от 15 °C до 30°C;
- относительная влажность воздуха (40 60) %;
- атмосферное давление (750 ± 30) мм рт.ст. $((100 \pm 4) \text{ к}\Pi \text{a})$

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) B; частота (50 ± 1) Γ ц;
- температура окружающего воздуха от 15 °C до 30 °C;
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление (750 ± 30) мм рт.ст. $((100 \pm 4) \text{ к}\Pi \text{a})$
- 4. Допускается замена измерительных трансформаторов и счетчиков на аналогичные, утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2, УСПД на однотипный утвержденного типа.

Надежность применяемых в системе компонентов:

- электросчетчик среднее время наработки на отказ не менее T_0 = 120 000 ч., время восстановления работоспособности T_B =168 ч.;
- компоненты ИВКЭ УСПД среднее время наработки на отказ не менее T_0 =55 000 ч., среднее время восстановления работоспособности T_B = 24 ч.;
- сервер среднее время наработки на отказ не менее T=45000 ч, среднее время восстановления работоспособности t = 1 ч.

Оценка надежности АИИС КУЭ в целом:

 $K_{\Gamma \text{ AUUC}} = 0,664 -$ коэффициент готовности;

То диис = 333 ч. – среднее время наработки на отказ.

Надежность системных решений:

- Применение конструкции оборудования и электрической компоновки, отвечающих требованиям IEC Стандартов;
- Стойкость к электромагнитным воздействиям;
- Ремонтопригодность;
- Программное обеспечение отвечает требованиям ISO 9001;
- Мощные функции контроля процесса работы и развитые средства диагностики системы:
- Резервирование элементов системы;
- Резервирование каналов связи при помощи переносного инженерного пульта;
- Резервирование электропитания оборудования системы.

Регистрация событий:

журнал событий счетчика:

- попытки несанкционированного доступа;
- связи со счетчиком, приведшие к каким-либо изменениям данных;
- изменение текущих значений времени и даты при синхронизации времени;
- отсутствие напряжения при наличии тока в измерительных цепях;
- перерывы питания.журнал событий ИВКЭ:
- ввод расчётных коэффициентов измерительных каналов (коэффициентов трансформации измерительных трансформаторов тока и напряжения);
- ввод/изменение групп измерительных каналов учёта электроэнергии для расчёта агрегированных значений электроэнергии по группам точек измерений (необходимость формирования групп измерительных каналов в промконтроллере определяется на стадии проектирования); потеря и восстановление связи со счетчиком;
- установка текущих значений времени и даты;
- попытки несанкционированного доступа;
- связи с промконтроллером, приведшие к каким-либо изменениям данных;
- перезапуски промконтроллера (при пропадании напряжения, зацикливании и т.п);
- изменение текущих значений времени и даты при синхронизации времени;
- отключение питания.
 - журнал событий ИВК:
- даты начала регистрации измерений;
- перерывов электропитания;
- программных и аппаратных перезапусков;
- установка и корректировка времени;
- переход на летнее/зимнее время;
- нарушение защиты ИВК;

- отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищенность применяемых компонентов:

механическая защита от несанкционированного доступа и пломбирование:

- привод разъединителя трансформаторов напряжения;
- клеммы низкого напряжения трансформаторов напряжения;
- корпус (или кожух) автоматического выключателя в цепи трансформатора напряжения, а так же его рукоятка (или прозрачная крышка);
- клеммы вторичной обмотки трансформаторов тока;
- промежуточные клеммники, через которые проходят цепи тока и напряжения;
- испытательная коробка (специализированный клеммник);
- крышки клеммных отсеков счетчиков;
- крышки клеммного отсека УСПД.

защита информации на программном уровне:

- результатов измерений при передаче информации(возможность использования цифровой подписи);
- установка пароля на счетчик;
- установка пароля на промконтроллер (УСПД);
- установка пароля на сервер БД ИВК.

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 30 дней; при отключении питания не менее 35 суток;
- ИВКЭ суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35 дней; при отключении питания не менее 35 суток;
- ИВК хранение результатов измерений и информации состояний средств измерений не менее 3.5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино» с Изменением № 1 - АИИС КУЭ ПС 500/220/110/20 кВ «Чагино» с Изменением № 1 типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ определяется проектной документацией на АИИС КУЭ. В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 3.

Таблицы 3 – Комплектность АИИС КУЭ

Наименование	Количество
Трансформаторы тока ТРИ 60.23	6 шт.
Трансформаторы тока ТРИ 6	18 шт.
Трансформаторы напряжения ТЈР 6.0	12 шт.

Окончание таблицы 3 – Комплектность АИИС КУЭ

Наименование	Количество
Счетчики электроэнергии многофункциональные типа A1805RAL-P4-GB-DW-4	2 шт.
Счетчики электроэнергии многофункциональные типа A1802RALX-P4-GB-DW-4	6 шт.
Устройства сбора и передачи данных RTU-325H	1 шт.
СПО "Метроскоп"	1 шт.
ПО "АльфаЦЕНТР"	1 шт.
ИВК ЦСОД МЭС Центра	1 шт.
APM оператора с ПО Windows XP и AC_SE_5	1 шт.
Переносной инженерный пульт на базе Notebook	1 шт.
Формуляр	1 экземпляр
Инструкция по эксплуатации	1 экземпляр
Методика поверки	1 экземпляр

Поверка

осуществляется по документу МП 53178-14 «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино» с Изменением № 1 - АИИС КУЭ ПС 500/220/110/20 кВ «Чагино» с Изменением № 1. Методика поверки», утвержденному ФГУП «ВНИИМС» в феврале 2014 г.

Перечень основных средств поверки:

- трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки»;
- трансформаторов тока в соответствии с ГОСТ 8.217-20003 «ГСИ. Трансформаторы тока. Методика поверки»;
- по МИ 3195-2009 «ГСИ. Мощность нагрузки трансформаторов напряжения без отключения цепей. Методика выполнения измерений»;
- по МИ 3196-2009 «ГСИ. Вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений»;
- счетчиков типа АЛЬФА A1800 по документу МП 2203-0042-2006 «Счётчики электрической энергии трёхфазные многофункциональные Альфа A1800. Методика поверки», утвержденному ГЦИ СИ «ВНИИМ им Д.И. Менделеева» 19 мая 2006 г.;
- счетчиков типа АЛЬФА А1800 по документу «Счётчики электрической энергии трёхфазные многофункциональные Альфа А1800. Методика поверки ДЯИМ.411152.018 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2011 г.;
- ИВК АИИС КУЭ ЕНЭС (Метроскоп) в соответствии с документом ЕМНК.466454.005.МП «Комплексы измерительно-вычислительные АИИС КУЭ ЕНЭС (Метроскоп) ИВК АИИС КУЭ ЕНЭС (Метроскоп). Методика поверки», утвержденным ФГУ «Пензенский ЦСМ» 30 августа 2010 г.;
- УСПД RTU-325H по документу «Устройства сбора и передачи данных RTU-325H и RTU-325T. Методика поверки. ДЯИМ.466215.005МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2010 г.;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS)), номер в Государственном реестре средств измерений 27008-04.
- термогигрометр CENTER (мод.314): диапазон измерений температуры от -20 до + 60 °C, дискретность 0,1 °C; диапазон измерений относительной влажности от 10 до 100 %, дискретность 0,1 %.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «21168598.422231.0303.ИС1.М. Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино».

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино» с Изменением № 1 - АИИС КУЭ ПС 500/220/110/20 кВ «Чагино» с Изменением № 1

- 1. ГОСТ Р 8.596-2002«ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 2. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 3. ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».
- 4. «21168598.422231.0303.ИС1.М. Инструкция по эксплуатации системы автоматизированной информационно-измерительной коммерческого учета электроэнергии подстанции 500/220/110/20 кВ «Чагино».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Общество с Ограниченной Ответственностью «Энергоучет» (ООО «Энергоучет») Юридический/почтовый адрес:

443070, г. Самара,

ул. Партизанская, д. 150

Тел./Факс: +7(846) 268-00-00, 270-52-95

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС»)

Адрес: 119361, г. Москва, ул. Озерная, д.46

Тел./факс: (495)437-55-77 / 437-56-66; E-mail: office@vniims.ru, www.vniims.ru

Аттестат аккредитации ФГУП «ВНИИМС» по проведению испытаний средств измерений в

целях утверждения типа № 30004-13 от 26.07.2013 г.

Заместитель Руководителя
Федерального агентства по техническому
регулированию и метрологии

Ф.В. Булыгин

М.п. « _»_____2014 г.