

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.37.003.A № 50434

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Рабочие эталоны единицы средней мощности оптического излучения в волоконно-оптических системах передачи "РЭСМ-ВС"

ЗАВОДСКИЕ НОМЕРА 44, 45, 46, 47, 48, 49

ИЗГОТОВИТЕЛЬ

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт оптико-физических измерений" (ФГУП "ВНИИОФИ"), г. Москва

РЕГИСТРАЦИОННЫЙ № 53225-13

ДОКУМЕНТ НА ПОВЕРКУ МП 07.Д4-13

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 12 апреля 2013 г. № 381

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	Ф.1	3.Булыгин
Федерального агентства		
	n - n	. 2013 г.

Nº 009324

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Рабочие эталоны единицы средней мощности оптического излучения в волоконно-оптических системах передачи «РЭСМ-ВС»

Назначение средства измерений

Рабочие эталоны единицы средней мощности оптического излучения в волоконнооптических системах передачи (ВОСП) «РЭСМ-ВС» (далее по тексту - РЭСМ-ВС) предназначены для передачи единицы средней мощности оптического излучения, калибровки и поверки рабочих средств измерений средней мощности оптического излучения в ВОСП на фиксированных длинах волн излучения - длинах волн калибровки. Спектральная установка, входящая в состав РЭСМ-ВС, позволяет проводить поверку ваттметров и источников оптического излучения для волоконно-оптических систем передачи в рабочем спектральном диапазоне.

Описание средства измерений

Принцип действия РЭСМ-ВС при передаче единицы средней мощности рабочим средствам измерений в волоконно-оптических системах передачи основан на сличении показаний фотоэлектрического измерителя мощности из состава РЭСМ-ВС и рабочего средства измерений средней мощности на фиксированных длинах волн излучения источников РЭСМ-ВС - длинах волн калибровки.

РЭСМ-ВС состоит из двух установок: рабочего эталона единицы средней мощности оптического излучения на фиксированных длинах волн РЭСМ-В и установки для измерений спектральных характеристик приёмников и источников оптического излучения в ВОСП (спектральная установка).

В состав рабочего эталона РЭСМ-В входят фотоэлектрический измеритель оптической мощности, комплект стабилизированных источников излучения, волоконно-оптический аттенюатор и измерительный преобразователь ПР-2. Фотоэлектрический измеритель мощности предназначен для измерений оптической мощности источников с волоконно-оптическим выходом, принцип его действия основан на преобразовании Si- и In-Ga-As-фотодиодом оптического сигнала в электрический с последующим усилением и преобразованием в цифровую форму. Комплект стабилизированных источников излучения основан на полупроводниковых лазерных диодах и предназначен для формирования постоянных уровней оптической мощности с длинами волн 850, 1310, 1490, 1550 и 1625 нм. Волоконно-оптический аттенюатор служит для ослабления уровня мощности оптического излучения при сличении с рабочим средством измерений. Измерительный преобразователь ПР-2 основан на Si- и In-Ga-Asфотодиодах и позволяет контролировать форму оптического сигнала при поверке источников оптического излучения.

В состав спектральной установки входит монохроматор, осветитель с галогенной лампой и насадка с волоконным входом. В качестве опорного приёмника с известной спектральной характеристикой используется фотоэлектрический измеритель оптической мощности из состава рабочего эталона РЭСМ-В.

Управление работой измерителя оптической мощности из состава рабочего эталона РЭСМ-В и спектральной установки осуществляется с помощью персонального компьютера (ПК) через порт USB.

Конструктивно блоки РЭСМ-В выполнены в прямоугольных пластмассовых и пластмассово-металлических корпусах настольно-переносного типа. Для защиты от несанкционированного доступа к элементам схемы корпуса измерителя мощности и источников излучения пломбируются. Пломбируются винты крепления крышек устройств. Винты расположены вблизи углов корпуса и закрыты пластмассовыми крышками. Монохроматор и осветитель спектральной установки РЭСМ-ВС выполнены в настольных металлических корпусах. Для защиты от несанкционированного доступа к элементам схемы монохроматора его корпус пломбируется. Пломба устанавливается в чашку на правый задний винт крепления нижней панели корпуса.

Рисунок 1 - Общий вид и места пломбирования РЭСМ-В

- 1 источники оптического излучения; 2 измеритель оптической мощности;
- 3 блок питания измерителя оптической мощности; 4 аттенюатор оптический; 5 преобразователь ПР-2; 6 места установки пломб

Рисунок 2 - Схема маркировки измерителя мощности и источника оптического излучения РЭСМ-В (вид сзади)

Рисунок 3 - Общий вид, места пломбирования и маркировки монохроматора спектральной установки

1 - место нанесения маркировки; 2 - место установки пломбы.

Программное обеспечение

Программное обеспечение (ПО) предназначено для управления работой РЭСМ-ВС. ПО разделено на две части. Метрологически значимая часть ПО прошита в памяти микроконтроллера измерителя мощности рабочего эталона РЭСМ-В. Интерфейсная часть ПО запускается на ПК и служит для отображения, обработки и сохранения результатов измерений. ПО состоит из управляющих программ «WORK_ET_NEW.exe» для рабочего эталона РЭСМ-В и «МОNO_2007.exe» для спектральной установки. ПО работает под управлением операционной системы Windows XP или Windows 7.

После запуска программы «WORK_ET_NEW.exe» происходит инициализация и тестирование подключенного к ПК измерителя мощности рабочего эталона РЭСМ-В. При успешной инициализации на экране появится сообщение с указанием номера измерителя мощности рабочего эталона РЭСМ-В. Далее на экране ПК появляется основное окно программы. Оно состоит из двух частей - приборной панели и области протоколов. На приборной панели находятся кнопки управления режимом работы измерителя мощности и дисплей с отображением текущих показаний измерителя мощности. В область протоколов выводятся результаты измерений в виде таблицы.

Идентификационные данные (признаки) программного обеспечения указаны в таблице 1.

Таблица 1

Наименование программного обеспечения	Идентификационное наименование программного обеспечения	Номер версии (идентификаци- онный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления идентификатора программного обеспечения
Программа рабочего эталона РЭСМ-В	WORK_ET_NEW	1.2.0.1	3EAE624E	CRC32
Программа спектральной установки	MONO_2007	1.1.3	5C830D2F	CRC32

Идентификация ПО осуществляется проверкой соответствия серийных номеров аппаратной части программного обеспечения и программного обеспечения, установленного на персональный компьютер, при включении прибора.

Метрологически значимая часть ПО размещается в энергонезависимой памяти аппаратной части измерителя мощности, запись которой осуществляется в процессе производства. Доступ к электронным компонентам РЭСМ-ВС исключён конструкцией аппаратной части приборов.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «А» по МИ 3286-2010.

Метрологические и технические характеристики

Метрологические и технические характеристики РЭСМ-ВС приведены в таблице 2.

Таблица 2

·	
Наименование характеристики	Значение характеристики
Диапазон измеряемой средней мощности оптического излучения, Вт	$10^{-10} - 10^{-2}$
Диапазон длин волн исследуемого излучения, нм	600 – 1700
Длины волн калибровки измерителя мощности (длины волн излучения	840 - 860
источников), фиксированные в диапазонах, нм	1300 - 1320
	1540 - 1560
	1485 - 1495*
	1620 – 1630*
Предел допускаемой относительной погрешности измерений средней	
мощности оптического излучения на длинах волн калибровки, %:	
- в диапазоне 10^{-10} - $2 \cdot 10^{-3}$ Вт включительно	2,5
- в диапазоне $2 \cdot 10^{-3}$ - 10^{-2} Вт	3,5
Предел допускаемой относительной погрешности измерений средней мощности оптического излучения в рабочем спектральном диапазоне, %	5

Наименование характеристики	Значение характеристики	
Предел допускаемой относительной погрешности измерений относительных уровней мощности**, %, при значениях мощности:		
- в диапазоне 10 ⁻¹⁰ - 2·10 ⁻³ Вт	1,2	
- в диапазоне 10 ⁻⁵ - 10 ⁻⁴ Вт	0,5	
Мощность излучения источников, мВт, не менее	2,5	
Нестабильность мощности излучения источников за 15 мин, %, не более	0,3	
Время нарастания переходной характеристики измерительного преобразователя ПР-2, нс, не более	10	
Предел линейности измерительного преобразователя ПР-2, мВт	1	
Рабочий диапазон длин волн спектральной установки, нм	600 – 1700	
Предел допускаемой относительной погрешности измерений относительной спектральной характеристики опорного приёмника в диапазоне длин волн 800 – 1650 нм, %	5	
Предел допускаемой абсолютной погрешности градуировки монохроматора по шкале длин волн, нм	1	
Габаритные размеры (Д×Ш×В), мм, не более:		
- измеритель оптической мощности	130×110×35	
- блок питания измерителя оптической мощности	180×110×35	
- источник оптического излучения	210×160×75	
- оптический аттенюатор	70×115×70	
- монохроматор	310×240×170	
Масса комплекта РЭСМ-ВС, кг, не более	11	
* - если в комплект поставки входит излучатель на соответствующую длину волны ** - погрешность измерений отношения двух значений мощности		

Электропитание РЭСМ-ВС осуществляется от сети переменного тока напряжением 220±22 В, частотой 50±0,5 Гц через сетевые адаптеры, входящие в комплект поставки. Рабочие условия эксплуатации РЭСМ-ВС:

- температура окружающей среды, °С.....от 15 до 25
- относительная влажность воздуха при 20°C, %, не более......80
- атмосферное давление, кПа......от 95 до 105

Знак утверждения типа

наносится на титульный лист руководства по эксплуатации методом штемпелевания и в виде наклейки на корпус прибора методом наклеивания.

Комплектность средства измерений

Состав комплекта РЭСМ-ВС представлен в таблице 3.

Таблица 3

Наименование	Количество,	Примечание
	шт.	•
Измеритель оптической мощности	1	
Блок питания измерителя оптической мощности	1	
Кабель соединительный измерителя мощности	1	
Источник оптического излучения MM-850 нм*	1	
Источник оптического излучения ОМ-1310-1550 нм	1	
Сетевой адаптер источника оптического излучения	2	
Аттенюатор оптический 850 нм	1	
Аттенюатор оптический 1310-1550 нм	1	
Преобразователь измерительный ПР-2	1	
Кабель соединительный коаксиальный	1	
Коаксиальный тройник	1	
Нагрузка 50 Ом	1	
Нагрузка 1000 Ом	1	
Комплект волоконно-оптических кабелей	1	FC-PC
Монохроматор МДР	1	
Осветитель с галогенной лампой	1	
Блок питания монохроматора	1	
Блок питания осветителя	1	
Конвертор для связи с ПК	1	
Дифракционная решетка 750 штр/мм	1	
Оптический фильтр 0,6-1,0 мкм	1	
Оптический фильтр 1,0-1,7 мкм	1	
Волоконно-оптический кабель монохроматора	1	
Устройство ввода излучения в монохроматор	1	
Насадка с волоконно-оптическим адаптером	1	
Кабель-переходник USB-COM	1	
Нуль-модемный кабель	1	
Диск с программным обеспечением	1	
Персональный компьютер - ноутбук	1	
Рабочий эталон единицы средней мощности оптического	1	
излучения в ВОСП «РЭСМ-ВС». Руководство по экс-		
плуатации		
Монохроматор МДР. Руководство по эксплуатации	1	
Рабочий эталон единицы средней мощности оптического	1	
излучения в ВОСП «РЭСМ-ВС». Методика поверки		

^{* -} возможна установка дополнительного излучателя на длину волны 1490 или 1625 нм.

Поверка

осуществляется по документу МП 07.Д4-13 «Рабочий эталон единицы средней мощности оптического излучения в волоконно-оптических системах передачи «РЭСМ-ВС». Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИОФИ» 04 февраля 2013 г.

Основные средства поверки:

Государственный первичный специальный эталон единиц длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны для волоконно-оптических систем передачи информации ГЭТ 170-2011.

Основные метрологические характеристики:

Компаратор средней мощности оптического излучения в ВОСП. Калориметрический приемник:

- диапазон мощности $10^{-4} 10^{-2}$ Вт;
- спектральный диапазон 600 1700 нм;
- случайная составляющая погрешности компаратора, выраженная в виде СКО, 0,4%;
 - НСП компаратора 0,8 %;
 - СКО передачи 0,3 %.

Компаратор средней мощности оптического излучения в ВОСП. Фотоэлектрический ваттметр блока регистрации:

- диапазон измеряемых значений средней мощности от 10^{-9} до 10^{-2} Вт;
- диапазоны длин волн исследуемого излучения 800 900 нм, 1250 1350 нм, 1500 1700 нм;
- предел допускаемой основной относительной погрешности измерений средней мощности в рабочем спектральном диапазоне 5 %.

Установка для измерений нелинейности приемников оптического излучения в ВОСП:

- диапазон измерений нелинейности от 10^{-12} до 10^{-2} Вт;
- рабочие длины волн 850 нм, 1310 нм, 1550 нм;
- погрешность измерений нелинейности 0,1 % на порядок диапазона мощности.

Установка для измерений спектральных характеристик приемников и источников оптического излучения:

- диапазон длин волн от 600 до 1700 нм;
- погрешность измерений относительной спектральной характеристики 3 %;
- предел допускаемой абсолютной погрешности измерений длины волны 1 нм.

Сведения о методиках (методах) измерений

«Рабочий эталон единицы средней мощности оптического излучения в волоконнооптических системах передачи «РЭСМ-ВС». Руководство по эксплуатации», раздел 2 «Использование по назначению».

Нормативные документы, устанавливающие требования к РЭСМ-ВС

ГОСТ 8.585-2005 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины и времени распространения сигнала в световоде, средней мощности, ослабления и длины волны для волоконно-оптических систем связи и передачи информации».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ и (или) оказание услуг по обеспечению единства измерений.

Изготовитель

 Φ ГУП «Всероссийский научно-исследовательский институт оптико-физических измерений» (Φ ГУП «ВНИИО Φ И»).

Адрес: 119361, Москва, ул. Озерная, 46.

Телефон: (495) 430-42-89; факс: (495) 437-31-47

E-mail: vniiofi@vniiofi.ru

Испытательный центр

Государственный центр испытаний средств измерений федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт оптикофизических измерений» (ГЦИ СИ ФГУП «ВНИИОФИ»), аттестат аккредитации государственного центра испытаний (испытательной, измерительной лаборатории) средств измерений $N \ge 30003-08$ от 30.12.2008 г.

Адрес: 119361, Москва, ул. Озерная, 46.

Телефон: (495) 437-56-33; факс: (495) 437-31-47

E-mail: vniiofi@vniiofi.ru

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

м.п. «___»____ 2013 г.