

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.27.007.A № 50715

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Полигон пространственный эталонный Краснодарский

ЗАВОДСКОЙ НОМЕР КАГП14

ИЗГОТОВИТЕЛЬ

ОАО "Северо-Кавказское аэрогеодезическое предприятие" (ОАО "Сев.-Кав. АГП"), Ставропольский край, г. Пятигорск

РЕГИСТРАЦИОННЫЙ № 53472-13

ДОКУМЕНТ НА ПОВЕРКУ КАГП14МП

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 3 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **14 мая 2013 г.** № **483**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства	Ф.В.Буль	лгин
Федерального агентства		
	""	Γ.

№ 009634

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Полигон пространственный эталонный Краснодарский

Назначение средства измерений

Полигон пространственный эталонный Краснодарский (далее - Полигон) предназначен для хранения и передачи размера единиц длины, высот, ускорения силы тяжести рабочим средствам измерений (СИ) (навигационной и геодезической АПКНС*, свето- и радиодальномерам, электронным тахеометрам и лазерным сканерам, нивелирам и буссолям, астрономическим и гироскопическим теодолитам, гироскопическим платформам на подвижных транспортных средствах, гравиметрам).

Описание средства измерений

Принцип передачи размера единиц длины, плоского угла, превышений и ускорения силы тяжести Полигона заключается в определении метрологических параметров Полигона (геоцентрических координат и их разностей - приращений координат, длин линий, превышений (высот), ускорения силы тяжести) рабочими СИ и сравнении полученных результатов с эталонными значениями соответствующих параметров Полигона.

Полигон расположен в районе города Краснодар.

Краткая климатическая характеристика района на основе многолетних наблюдений по гидрометеорологической станции Краснодара:

- климат района умеренно-континентальный, без резких колебаний годовых и суточных температур; наиболее холодный месяц – январь, абсолютный минимум составляет -33 $^{\circ}$ C; наиболее теплый месяц – июль, абсолютный максимум составляет +40 $^{\circ}$ C.

Рельеф на местности представляет собой плоскую равнину с постепенным уклоном к северо-востоку с глубоким залеганием грунтовых вод. Максимальная глубина промерзания грунта -0.7 м.

Полигон включает в себя: сеть геодезических пунктов; линейный базис «Краснодарский» (рисунок 1) (далее - Базис); набор эталонных линий (37 линий).

Кроме того, Полигон содержит сеть триангуляции и нивелирный полигон.

Полигон состоит из 11 пунктов (рисунок 2), 8 из которых - пункты Базиса (построенные в 1987г.), 1 пункт - постоянно действующая спутниковая дифференциальная геодезическая станция (Рабочий центр ПДСДГС «Краснодар»), установленный на крыше производственного здания Экспедиции № 205 по адресу: г. Краснодар, ул. Маяковского, дом 124, который одновременно являются и гравиметрическим. Контрольный пункт № 0693 совмещен с грунтовым репером нивелирной сети I класса. Пункт ВГС «Краснодар» является одним из основных пунктов сети ВГС, созданной в 2007 году по государственной программе развития высокоточной спутниковой геодезической сети региона. Сеть триангуляции выполнена в виде замкнутого триангуляционного полигона из 5 пунктов.

Все пункты полигона закреплены на местности центрами долговременной сохранности, оборудованы устройствами для принудительного центрирования. Контрольный пункт № 0693 не имеет принудительного центрирования. Все пункты отвечают требованиям, предъявляемым к центрам геодезических полигонов. На всех пунктах обеспечена видимость верхней полусферы на углах возвышения, превышающая 10°. Высоты пунктов определены геометрическим нивелированием по программе I и II класса и связаны с Балтийской системой высот. Подъезд и подход ко всем пунктам Полигона возможен в любое время года.

^{*} АПКНС – аппаратура пользователей космических навигационных систем

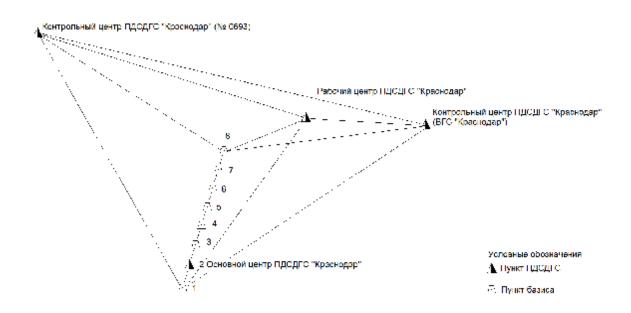


Рисунок 2 - Схема расположения пунктов Полигона (Набор эталонных линий)

Метрологические и технические характеристики

Диапазон линейных измерений Полигона, м	$(24 \div 34806)$	
Пределы абсолютной погрешности Полигона при доверительной		
вероятности 0,95 при измерениях приращений координат в системе	± 30	
WGS-84 в плане, мм		
Пределы абсолютной погрешности Полигона при доверительной верояти	ности 0,95 при:	
- измерениях длин линий для интервалов более 2016 м, мм	± 10	
- измерениях эталонных азимутов,"	± 1	
- измерениях магнитных азимутов,'	± 8	
Диапазон линейных измерений Базиса, м	24÷2016	
Пределы абсолютной погрешности Базиса при доверительной ве	роятности 0,95 при	
измерениях длин линий, мм, в интервале:		
- (0÷480) м	± 0,5	
- (480÷2016) м	± 1	
Номинальные значения интервалов Полигона, м		
1448, 2016, 8177, 10016, 11986, 16056, 17678, 25648, 26325, 26867, 34806		
Номинальные значения интервалов Базиса, м 24, 192, 288, 480, 984, 1448, 2016		
Допускаемая "невязка" в треугольнике, мм	10	

	Бсего листов 3
Высота центров Базиса над уровнем земли, м	1,2÷1,3
Общий уклон трассы Базиса	0,0014
Отклонение от створности базисных центров, мм, не более	50
Длины сторон треугольника (сеть триангуляции): №1 - №8 – Рабочий	2,016;10,016; 11,986
центр ПДСДГС «Краснодар», км	
Длины сторон треугольника (сеть триангуляции): №1 - №8 – Кон-	2,016; 25,870;
трольный центр ПДСДГС «Краснодар» (№ 0693), км	26,325
Длины сторон треугольника (сеть триангуляции): №1 - Контрольный	26,325; 26,867;
центр ПДСДГС «Краснодар» (№ 0693) - Рабочий центр ПДСДГС	11,986
«Краснодар», км	
Диапазон высот нивелирного полигона, м	20÷40
Класс нивелирования	I, II
Азимут №1 - №8	28° 39,7'
Азимут стенда для транспортных АПКНС	28° 47,9′
Скорость движения транспортных АПКНС, км/ч, не более	40
Диапазон измерений ускорения силы тяжести на гравиметрическом	
пункте, M/c^2	(9,80÷9,81)
Погрешность при измерениях ускорения силы тяжести, м/c^2	3×10 ⁻⁵
Электропитание вычислительного центра от сети переменного тока:	
- напряжением, В	(220^{+22}_{-33})
- частотой, Гц	(50 ± 1)
- потребляемая мощность, кВт	(30 ± 1)
Средний срок службы, лет, не менее	60
Условия эксплуатации по гр. Д1 и гр. В1 ГОСТ Р 52931-2008, со следую	
- оборудование на открытом воздухе:	щими уто-птепиями.
	20 ±20
а) температура окружающей среды, °С	(20^{+20}_{-40})
б) верхнее значение относительной влажности воздуха при 30 °C,	
без конденсации влаги, %	98
в) атмосферное давление, кПа	(100 ⁺⁵ ₋₁₅)
- оборудование в отапливаемом помещении вычислительного центра:	
а) диапазон температур, °С	(20 +15)
б) верхнее значение относительной влажности при 30 °C, %	80
в) атмосферное давление, кПа	(100 +5)

Знак утверждения типа

Знак утверждения типа нанесен на табличку на пункт №1 Базиса методом гравировки и титульный лист формуляра типографским способом.

Комплектность средства измерений

Комплектность средства измерении				
Обозначение	Наименование	Количе-	Примечание	
КАГП14	Сеть пунктов Полигона	1	11 пунктов	
КАГП14-01	Базис линейный эталонный «Краснодарский»	1	8 пунктов	
КАГП14-02	Эталонный и магнитный азимуты	2	№1-№8	
КАГП14-03	Полигон нивелирный	1	Нивелирная сеть І и II класса	

КАГП14-04	Стенд для испытаний АПКНС, используемых на транспортных средствах	1	Участок дороги 2 км, отклонение от прямолинейности не более 5' (3 м)
КАГП14-05	Сеть триангуляции	1	5 пунктов
КАГП14-06	Пункт гравиметрический	1	Рабочий центр ПДСДГС «Краснодар»
ВЦ	Центр вычислительный	1	Закрытое отапливаемое помещение
КАГП14ФО	Формуляр	1	
КАГП14МП	Методика поверки	1	

Поверка

осуществляется по документу КАГП14МП «Полигоны пространственные эталонные. Методика поверки», утвержденному ФГУП «СНИИМ» в июне 2012 г.

Эталоны

Наименование	НД или метрологические и технические характеристики		
Измерительная лента (рулетка) 30 метров ГОСТ 7502-98	КТ2, 3 разряд		
Комплект: - электронный тахеометр TCR 802 power; - светодальномер DISTOMAT WILD DI2002,	ПГ комплекта \pm (0,3 + 1×10 ⁻⁶ L), где L - в мм		
зав. № 180142			
Нивелир DL-101C	СКП на 1 км двойного хода не превышает 0,4 мм		
Базис линейный эталонный «Краснодарский»	2 разряд		
Комплект GNSS - приемников спутниковых геодезических	ПГ комплекта $(3 + 0.5 \cdot 10^{-6} \cdot D)$ мм		

Сведения о методиках (методах) измерений

КАГП14ФО «Полигон пространственный эталонный Краснодарский. Формуляр».

Нормативные и технические документы, устанавливающие требования к полигону пространственному эталонному Краснодарскому

- 1 Инструкция о построении государственной геодезической сети Союза ССР // ГУГиК . М.: Геодезиздат, 1966. 459с.
- 2 ГКИНП (ГИТА) 03 010 03 Инструкция по нивелированию I, II, III и IV классов, ЦНИИГАиК, М., 2004
- 3 ГКИНП (ГНТА)-04-122-03 Инструкция по развитию высокоточной государственной гравиметрической сети РОССИИ. ГУГК, М., ЦНИИГАиК. 2004
 - 4 СТО 02570823-19-05 Базисы линейные эталонные. Общие технические требования
- 5 ГОСТ Р 51794-2008 Глобальные навигационные спутниковые системы. Системы координат. Методы преобразований координат определяемых точек.
- $6\ \Gamma OCT\ P\ 54257-2010\$ Надежность строительных конструкций и оснований. Основные положения и требования
- 7 ГОСТ 8.016-81 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений плоского угла
- $8\ \Gamma OCT\ 8.503-84\ \Gamma CИ.$ Государственная поверочная схема для средств измерений длины в диапазоне $24\div75000\ \mathrm{M}$
- 9 МИ 2121-90 ГСИ. Государственная поверочная схема для средств измерений ускорения свободного падения

10 МИ 2292-94 Рекомендация. ГСИ. Государственная поверочная схема для средств измерений разностей координат по сигналам космических навигационных систем

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

При осуществлении геодезической и картографической деятельности.

Изготовитель

ОАО «Северо-Кавказское аэрогеодезическое предприятие» (ОАО «Сев.-Кав. АГП») 357500, г. Пятигорск, Ставропольского края, пр. Горького, 4, тел. (8793) 36-35-41, факс (8793) 97-37-86, телетайп 169141 Триод, E-mail: skagp@rambler.ru

Испытательный центр

Государственный центр испытаний средств измерений СНИИМ (ГЦИ СИ СНИИМ), юридический адрес: 630004, г. Новосибирск, пр. Димитрова, 4, тел.(383) 210-08-14, факс (383) 210-13-60, электронная почта director@sniim.nsk.ru, номер аттестата аккредитации: 30007-09

Заместитель			
Руководителя Федерального агентства			
по техническому регулированию и метрологи	Ф.В. Булыгин		
	Μπ	" »	2013 г