

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

CN.C.27.070.A № 50809

Срок действия до 17 мая 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Дефектоскопы ультразвуковые CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR

ИЗГОТОВИТЕЛЬ

"Shantou Institute of Ultrasonic Instruments Co., Ltd.", KHP

РЕГИСТРАЦИОННЫЙ № 53547-13

ДОКУМЕНТ НА ПОВЕРКУ МП АПМ 34-12

интервал между поверками 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 17 мая 2013 г. № 509

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Ваместитель Руководителя Федерального агентства		Ф.В.Булыгин
	#	2013 г.

№ 009796

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Дефектоскопы ультразвуковые CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR.

Назначение средства измерений

Дефектоскопы ультразвуковые CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR предназначены для обнаружения дефектов и измерений глубины их залегания в изделиях, выполненных из металлических, полимерных и композитных материалов.

Описание средства измерений

Принцип действия дефектоскопов ультразвуковых CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR основан на методе акустического контроля. Импульсные сигналы заданной частоты и мощности вырабатываются генератором импульсов и преобразуются в ультразвуковые колебания пьезоэлектрическим преобразователями. Сформированная ультразвуковая волна проникает в объект контроля и, отражаясь от неоднородностей (границ дефектов) или донной поверхности, возвращается обратно. Отраженный ультразвуковой сигнал преобразуется преобразователем в электрический сигнал, который обрабатывается электронными блоками приемника. По времени распространения ультразвукового импульса в изделии от поверхности ввода ультразвука в объект контроля до границы дефекта или до донного сигнала и обратно, измеряется глубина залегания дефекта или толщина контролируемого изделия.

В дефектоскопах ультразвуковых CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR используются следующие методы акустического неразрушающего контроля: эхо - импульсный, теневой, контроль раздельно-совмещенными преобразователями, преобразователями, построенными по принципу фазированной антенной решетки (ФАР). Дефектоскопы ультразвуковые CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR могут обеспечивать различные методы ввода ультразвуковых колебаний в объект контроля: контактный, щелевой или иммерсионный.

Дефектоскопы ультразвуковые CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR имеют моноблочную конструкцию. Корпус изготовлен из ударопрочного пластика. Для отображения информации используются жидкокристаллические дисплеи. Управление всеми параметрами осуществляется с передней панели.

Для ограничения доступа к определённым частям в целях несанкционированной настройки и вмешательства производится пломбирование стыков боковых панелей посредством нанесения защитной наклейки.

CTS-602 CTS-SUPOR CTS-703

Общий вид дефектоскопов ультразвуковых CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR

Программное обеспечение

Программное обеспечение разработано специально для дефектоскопов ультразвуковых CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR и служит для управления их функциональными возможностями, а также для обработки и отображения результатов измерений.

Идентификационные данные программного обеспечения:

Наиме-	Идентифика-	Номер версии	Цифровой иденти-	Алгоритм вы-
нование про-	ционное на-	(идентифика-	фикатор программ-	числения цифро-
граммного	именование	ционный но-	ного обеспечения	вого идентифи-
обеспечения	программного	мер) про-	(контрольная сумма	катора про-
	обеспечения	граммного	исполняемого кода)	граммного обес-
		обеспечения,		печения
		не ниже		
CTS-9009	CTS-9009			
system	system software	V2.05.1	174F0956	CRC-32
software	system seremare			
CTS-9006	CTS-9006			
system	system software	V2.05.1	D452A991	CRC-32
software	system sortware			
CTS-9005				
system	CTS-9005	V2.05.1	BF9EC01A	CRC-32
software	system software			
CTS-				
4020E/2020E	CTS-			
	4020E/2020E	V2.05.2	FD4B897A	CRC-32
system soft- ware	system software			
CTS-30A/B				
system soft-	CTS-30A/B sys-	V1.1.025	4FFFF5E2	CRC-32
ware	tem software	V 1.1.023	711113112	CRC-32
CTS-703				
system	CTS-703 system	V1.03.0	8C31D70C	CRC-32
software	software	V 1.03.0	0C31D70C	CRC-32
CTS-49/59	CTS-49/59	V1 10 C	A OD 1 2 A 7 A	CDC 22
system	system software	V1.19.6	A2B13A7A	CRC-32
software	•			

CTS-602 system software	CTS-602 system software	V1.10.0	EF9307A9	CRC-32
SUPOR system software	SUPOR system software	V2.01.00	FD5AAB65	CRC-32

Программное обеспечение зарегистрировано как интеллектуальная собственность «Shantou Institute of Ultrasonic Instruments Co., Ltd.», КНР и защищено от несанкционированного доступа паролями различных уровней доступа. Защита программного обеспечения соответствует уровню «А» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

		,		,			
CTS-9009	CTS-	CTS-	CTS-	CTS-	CTS-	CTS-	CTS-SUPOR
	9006	9005	602	703	20-20E	40-20E	
370± 10%	370±	370±	370±	(50÷500)	370±	530±	(50÷500)±
	10%	10%	10%	± 10%	10%	10%	10%
285	285	285	285	30÷600	285	300	10÷600
±10%	±10%	±10%	±10%	±10%	±10%	±10%	±10%
40	40	40	40	15	40	60	15
20÷500	20÷500	20÷500	20÷500	100÷	20÷500	20÷500	100÷2000
				2000			
- 20	-20	±20	-20	±20	+20	±20	±20
±20	±20	±20	±20	±20	±20	±20	±20
(0÷110) с шагом: 0,5/2/6/12			0-80				
(1÷4)	0.5-10	0.5-10	0.5-15		1∴/	1∴/	$0,5 \div 20$
$(0,5\div8)$,	,	-	0,5÷20			
(2÷15)	(1 · 4)	(1 · 4)	(1 · 10)		(0,3 · 13)	(0,5 · 15)	
12	12	12	12	12	12	12	12
±1	±1	±1	±1	±1	±1	±1	±1
400÷1500	400÷15	400÷15	1000÷1	1000÷1	1000÷1	1000÷1	1000÷10000
0	000	000	0000	0000	0000	0000	
			0.10	0.25	0÷2,1	0÷2,1	0÷2,5
0÷2,1	$0 \div 2,1$	0÷2,1	0÷1,0	0÷2,5	$0 \cdot 2, 1$	$0 \cdot 2, 1$	0.2,3
· ·	0÷2,1 0÷1300	0÷2,1 0÷1300	,	5÷1500	,	*	5÷15000
0÷2,1 0÷13000	,	,	0÷1,0 0÷6000		0÷6000	0÷6000	
0÷13000	0÷1300 0	0÷1300 0	0÷6000	5÷1500 0	0÷6000	0÷6000	
	285 ±10% 40 20÷500 ±20 (1÷4) (0,5÷8) (2÷15) 12 ±1 400÷1500	9006 370± 10% 370± 10% 285 285 ±10% ±10% 40 40 20÷500 20÷500 ±20 ±20 (1÷4) (0,5÷8) (2÷15) (1÷4) 12 12 ±1 ±1 400÷1500 400÷15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Лист № 5 Всего листов 7

								Вссто листон
Форма отображения сигналов на экране дефектоскопа	А-скан,	А-скан	А-скан	А-скан,	А-скан,	А-скан	А-скан	А-скан,
	В-скан			В-скан,	TOFD-			В-скан, С-
				С-скан,	скан			скан, D-скан
				D -скан				
Время установления рабочего режима, не более, мин	0,3	0,3	0,3	0,3	1,5	0,3	0,3	0,85
Питание от источника постоянного тока, В	9	÷12 (внеш	ний блок	питания);		6÷9	6÷9	11,1
		6,0÷	8,4(Батаре	ея)		DC(вне	DC(вне	(Батарея)
			_			шний	шний	
						блок	блок	
						пита-	пита-	
						ния);	ния);	
						6,0÷8,4	6,0÷8,4	
						(Бата-	(Бата-	
						рея)	рея)	
Габаритные размеры, не более, мм				162×	300×	260 ×	260×95	310×220×15
	152	$\times 240 \times 11$	16	250×	204×	780 ×	×180	0
				116	125	180		
Масса, с комплектом аккумуляторных батарей, не более, кг	1,15 2,6 6,		6,5	1,94	1,94	6,5		
Условия эксплуатации:				1		I		
- диапазон рабочих температур, °С				0÷45				0÷45
- относительная влажность, не более, %	80				80			
- атмосферное давление, кПа	100 ± 5				100 ± 5			
Средний срок службы, не менее, лет	8							
Средняя наработка на отказ, не менее, час	1000							

Знак утверждения типа

наносится на корпус дефектоскопов ультразвуковых CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR методом наклеивания и на титульный лист руководства по эксплуатации методом печати.

Комплектность средства измерений

1	Дефектоскоп ультразвуковой CTS-9009, CTS-9006, CTS-9005,	1 шт.		
	CTS-602, CTS-703, CTS-2020E, CTS-4020E, CTS-SUPOR			
2	Кабели	1 комплект		
3	Преобразователь ультразвуковой			
	одного из типов:	1 шт.*		
	- двухэлементный преобразователь			
	- иммерсионный			
	- контактный одноэлементный ПЭП			
	- контактный двух - элементный ПЭП			
	- контактный наклонный ПЭП			
	- контактный ПЭП с использованием ФАР			
	- набор контактных ТОFD ПЭП			
4	Комплект призм (наличие в зависимости от модели дефекто-	1 шт.		
	скопа)			
5	Сканирующее устройство (наличие в зависимости от модели			
	дефектоскопа)			
6	Программное обеспечение	1 шт.		
7	Руководство по эксплуатации	1 шт.		
8	Методика поверки	1 шт.		

^{*-} в зависимости от заказа

Поверка

осуществляется по документу МП АПМ 34-12 «Дефектоскопы ультразвуковые CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020, CTS-SUPOR. Методика поверки», утверждённому ГЦИ СИ ООО «Автопрогресс—М» в апреле 2013 г.

Перечень основных средств поверки (эталонов), применяемых для поверки:

- осциллограф типа Tektronix TDS-2022B, диапазон частот ≤200 МГц, диапазон измерений в полосе частот от 0 до 300 МГц, коэффициент усиления 1 мВ/дел ÷10 В/дел с погрешностью ±2%, коэффициент развертки 2 нс/дел ÷10 с/дел с погрешностью ±0,002%;
- генератор сигналов высокочастотный типа Γ 4-158, диапазон частот $0,01\div99,999$ М Γ ц с погрешностью $\pm 0,001\%$, выходное напряжение $0,5\div1,5B$;
- частотомер Ч3-85/3, диапазон измерений частоты 0,01 Γ ц... 1,5 Γ Γ ц с погрешностью ± 7 х 10^{-9} ;
 - аттенюатор широкополосный ATT-90-0,1-95/2, (0.1 ± 30) МГц, ± 0.05 дБ;
- комплект контрольных образцов и вспомогательных устройств КОУ-2: контрольный образец СО-2 №1146 из набора КОУ-2, скорость продольных УЗК = (5900 ± 118) м/c; затухание продольной ультразвуковой волны на частоте $(2,5\pm0,5)$ МГц не более $\pm2,0$ дБ; интервал времени между первым и третьим донным эхосигналом (40 ± 1) мкс.

Сведения о методиках (методах) измерений

Методика выполнения измерений приведена в документах: «Дефектоскопы ультразвуковые CTS-9009/CTS-9006. Руководство по эксплуатации», «Дефектоскопы ультразвуковые CTS-9005. Руководство по эксплуатации», «Дефектоскопы ультразвуковые CTS-602. Руководство по эксплуатации», «Дефектоскопы ультразвуковые CTS-703. Руководство по эксплуатации», «Дефектоскопы ультразвуковые CTS-2020E. Руководство по эксплуатации»,

«Дефектоскопы ультразвуковые CTS-4020E. Руководство по эксплуатации», «Дефектоскопы ультразвуковые CTS-SUPOR. Руководство по эксплуатации».

Нормативные и технические документы, устанавливающие требования к дефектоскопам ультразвуковым CTS-9009, CTS-9006, CTS-9005, CTS-602, CTS-703, CTS-2020E, CTS-4020, CTS-SUPOR

- 1. МИ 2060-90. ГСИ. Государственная поверочная схема для средств измерений длины в диапазоне $(1\times10-6\div50)$ м и длин волн в диапазоне $(0,2\div50)$ мкм;
- 2. Техническая документация «Shantou Institute of Ultrasonic Instruments Co., Ltd.», КНР.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- для применения вне сферы государственного регулирования обеспечения единства измерений.

Изготовитель

«Shantou Institute of Ultrasonic Instruments Co., Ltd.», #77, Jinsha Road, Shantou 515041 Guangdong, China

Тел.: 86-754-88250150 Факс.: 86-754-88251499 E-mail: siui@siui.com

Заявитель

ЗАО «ПромГруппПрибор»

115088, г. Москва, ул. Шарикоподшипниковская, д. 4, к.4А

Тел.: +7-495 9813728 Факс: +7-495 9813729 E-mail: info@pgpribor.com

Испытательный центр

ГЦИ СИ ООО «Автопрогресс-М»

125829, г. Москва, Ленинградский пр-т, д. 64, офис 501Н.

Тел.: +7 (499) 155-0445, факс: +7 (495) 785-0512

E-mail: <u>info@autoprogress-m.ru</u> Аттестат аккредитации № 30070-07

n				
Зам	reca	гит	гел	ГL

Руководителя Федерального агентства по техническому регулированию и метрологии

	Ф. В. Булыгин
М. п. «»	2013 г.