

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

GB.C.28.149.A № 50951

Срок действия до 06 июня 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ **Копры вертикальные DWT, IM**

ИЗГОТОВИТЕЛЬ
"Imatek Ltd", Великобритания

РЕГИСТРАЦИОННЫЙ № 53685-13

ДОКУМЕНТ НА ПОВЕРКУ МП ТИНТ 61-2012

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **06 июня 2013 г.** № **551**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Ваместитель Руководителя		Ф.В.Булыгин
Федерального агентства		
	","	2013 г.

Серия СИ

№ 009942

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Копры вертикальные DWT, IM

Назначение средства измерений

Копры вертикальные DWT, IM предназначены для измерения энергии разрушения образцов при испытании ударной прочности образцов различных материалов.

Описание средства измерений

Принцип действия копров вертикальных DWT, IM основан на преобразовании датчиком силы ударного импульса, полученного при разрушении образца единичным ударным нагружением, а также пиковой нагрузки на испытываемый образец. Энергия, затраченная на разрушение образца, определяется как разность потенциальной энергии падающего груза в начале падения и кинетической энергии в точке после разрущения образца (высчитывается датчиком силы). Пиковая нагрузка, при испытании, определяется датчиком силы, расположенным за бойком падающего груза.

Конструктивно копры вертикальные DWT, IM состоят из корпуса, вертикальных колонн, падающего груза с бойком и датчиком силы, электропривода салазок падающего груза, пульта управления и системы обработки данных, предназначенной для управления работой, проведения настройки, калибровки, задания видов испытаний и их параметров, отображения результатов измерений на дисплее и вывода данных на внешние устройства. Копры вертикальные DWT, IM могут оснащаться устройством для центрирования, загрузки и удержания и испытываемого образца. Подъем падающего груза с бойком может осуществляется с помощью электропривода автоматически. Копры вертикальные IM могут быть оснащены устройством улавливания падающего груза при отскоке от образца после ударного нагружения, для предотвращения повторного удара.

Падающий груз закреплен на салазках, свободно перемещающихся по колоннам при выключенном тормозном механизме

Положение траверсы с бойком по высоте, соответствующее выбранному значению энергии, устанавливается автоматически.

Для проведения теста задается либо высота падения падающего груза, либо энергия необходимая для разрушения образца. В случае выбора энергии, компьютер автоматически высчитывает необходимую высоту поднятия падающего груза. Привод салазок поднимает падающий груз на необходимую высоту, тормоза салазок упираются в направляющие колонны, падающий груз отсоединяется от салазок и падает вниз на образец.

Копры вертикальные DWT выпускаются в шести модификациях, копры вертикальные IM выпускаются в шести модификациях, отличающихся друг от друга диапазоном измерения энергии, нагрузки, габаритными размерами и массой.

Общий вид копров вертикальных DWT, IM представлен на рисунке 1.

Рисунок 1. Копры вертикальные DWT (слева) и IM (справа).

Программное обеспечение

Программное обеспечение (Π O), устанавливаемое в энергонезависимую память модуля управления, отражено в таблице 1.

Таблица 1

Наименова-	Идентификаци-	Номер версии	Цифровой иденти-	Алгоритм вычисле-
ние про-	онное наимено-	(идентификаци-	фикатор программ-	ния цифрового иден-
граммного	вание про-	онный номер)	ного обеспечения	тификатора про-
обеспечения	граммного	программного	(контрольная сумма	граммного обеспе-
	обеспечения	обеспечения	исполняемого кода)	чения
ImpAcqt	Impact Analysis Software	V3.2.9	4ED30EB2	CRC32

V3- метрологически значимая часть ПО;

Метрологические и технические характеристики

Метрологические и технические характеристики копров вертикальных DWT приведены в таблице 2, копров вертикальных IM приведены в таблице 3.

^{2.9 –} метрологически не значимая часть ПО.

Уровень защиты встроенного ΠO от непреднамеренных и преднамеренных изменений – A по MИ 3286-2010.

Таблица 2

Характеристики	DWT40-	DWT40-	DWT40-	DWT40-	DWT40-	DWT40-
	30	40 40	50 50	60 60	100	120
Диапазон энергий (со стандартным грузом), Дж	14,884 ÷ 30,625	11,907 ÷ 40,500	14,884 ÷ 50,625	18,750 ÷ 60,750	31,250 ÷ 101,250	37,500 ÷ 121,500
Диапазон энергий (с грузом, имеющим переменную массу), Дж	-	-	1	12,500 ÷ 60,750	25,000 ÷ 101,250	31,250 ÷ 121,500
Отклонение запаса потенциальной энергии от номинального значения, % (не более)	± 2	± 2	± 2	± 2	± 2	± 2
Номинальная нагрузка, кН	1000	1000	1500	1500	1500	1500
Относительная по- грешность измере- ния нагрузки, % (не более)	± 2	± 2	± 2	± 2	± 2	± 2
Масса груза (в стандартном исполнении), кг	1250	1000	1250	1500	2500	3000
Масса груза (с переменной массой), кг	-	-	-	1000 ÷ 1500	2000 ÷ 2500	2500 ÷ 3000
Диапазон скоростей, м/с	5 ÷ 7	5 ÷ 9	5 ÷ 9	5 ÷ 9	5 ÷ 9	5 ÷ 9
Высота сброса падающего груза, мм	1214 ÷ 2500	1214 ÷ 4200				
Габаритные размеры (ДхШхВ), мм	1300x930 x5430	1300x930 x7130	1300x153 0x7500	1520x270 0x8137	1520x270 0x8137	1520x270 0x8137
Масса, кг, не более	5500	6000	8000	10000	11000	12000
Параметры электрического питания: от сети переменного тока: -напряжение, В	230±10%, 50/60,	230±10%, 50/60,	230±10%, 50/60,	230±10%, 50/60,	230±10%, 50/60,	230±10%, 50/60,
-напряжение, В -частота, Гц	1 фаза	1 фаза	1 фаза	Зфаза	Зфаза	Зфаза

Таблица 3

Характеристики	IM10T-10	IM10T-12	IM10T-15	IM10T-20	IM10T-25	IM10T-30
Диапазон энергий (с	1,0 ÷ 78	1,0 ÷ 94	1,0 ÷ 117	1,0 ÷ 157	1,0 ÷ 196	1,0 ÷ 235
опцией небольшого		,		,		
груза), Дж						
Диапазон энергий (со	4,0 ÷ 294	4,0 ÷ 352	4,0 ÷ 440	4,0 ÷ 587	4,0 ÷ 735	4,0 ÷ 882
стандартным грузом),	1,0 25.	.,0 002	.,.	.,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,, 002
Дж						
Диапазон энергий (с	_	25 ÷ 1175	25 ÷ 1500	25 ÷ 2000	25 ÷ 2500	25 ÷ 3000
опцией большого гру-		23 1173	23 1300	23 2000	23 2300	23 3000
за), Дж						
Диапазон энергий (при	_	4,0 ÷ 1125	4,0 ÷ 2000	4,0 ÷ 2000	4,0 ÷ 2000	4,0 ÷ 2000
использовании систе-	_	4,0 · 1123	4,0 - 2000	4,0 - 2000	4,0 · 2000	4,0 · 2000
мы ускорителей и гру-						
за массой 10кг), Дж						
Отклонение запаса по-		. 2	. 2	. 2	. 2	. 2
тенциальной энергии	± 2	± 2	± 2	± 2	± 2	± 2
от номинального зна-						
чения, %						
(не более)	20	120	120	120	120	250
Номинальная	30	120	120	120	120	350
нагрузка, кН						
Относительная по-						
грешность измерения	± 2	± 2	± 2	± 2	± 2	± 2
нагрузки, %						
(не более)						
Масса груза (опция	2 ÷ 8	2 ÷ 8	2 ÷ 8	2 ÷ 8	2 ÷ 8	2 ÷ 8
небольшого груза), кг						
Масса груза (стан-	8 ÷ 30	8 ÷ 30	8 ÷ 30	8 ÷ 30	8 ÷ 30	8 ÷ 30
дартный груз), кг						
Масса груза (опция	$50 \div 100$	$50 \div 100$	$50 \div 100$	50 ÷ 100	$50 \div 100$	$50 \div 100$
большого груза), кг						
Диапазон скоростей	$1 \div 4,43$	$1 \div 4,85$	$1 \div 5,42$	1 ÷ 6,26	$1 \div 7,00$	$1 \div 7,67$
(стандартный), м/сек						
Диапазон скоростей (с	-	1 ÷ 15	1 ÷ 20	1 ÷ 20	1 ÷ 20	1 ÷ 20
опцией ускорителей						
груза), м/с						
Высота сброса па-	50 ÷ 1000	50 ÷ 1200	50 ÷ 1500	50 ÷ 2000	50 ÷ 2500	25 ÷ 3000
дающего груза, мм						
Габаритные размеры	1420x760	1420x760	1420x760	1420x760	1420x760	1420x760
(ДхШхВ), мм	x3500	x3700	x4000	x4500	x5000	x5500
Масса, кг, не более	1950	2000	2050	2100	2200	2300
Параметры электриче-						
ского питания: от сети						
переменного тока:	230±10%,	230±10%,	230±10%,	230±10%,	230±10%,	230±10%,
-напряжение, В	50/60,	50/60,	50/60,	50/60,	50/60,	50/60,
-частота, Гц	1 фаза	1 фаза	1 фаза	1 фаза	1 фаза	1 фаза

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист эксплуатационной документации типографским способом и на табличку, прикрепленную к боковой поверхности копра методом офсетной печати.

Комплектность средства измерений

Комплектность средства измерения приведена в таблице 4.

Таблина 4

Наименование	Кол-во, шт	Примечание
Копер	1	Модификация по заказу
CD с Руководством по эксплуатации и ПО	1	

Поверка

осуществляется по документу МП ТИнТ 61-2012 «Копры вертикальные DWT, IM. Методика поверки», утверждённому ГЦИ СИ ООО «ТестИнТех» 28.08.2012г.

Основные средства поверки:

Динамометр сжатия 2-го разряда - ГОСТ 8.663-09, погрешность \pm 0,45 %;

Линейка измерительная ГОСТ 427, абсолютная погрешность ± 1 мм.

Сведения о методиках (методах) измерений

Сведения о методах измерений содержатся в руководстве по эксплуатации.

Нормативные и технические документы

Нормативные и технические документы, устанавливающие требования к копрам вертикальным DWT, IM:

Техническая документация фирмы «Imatek Ltd», Великобритания.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Вне сферы государственного регулирования обеспечения единства измерений.

Изготовитель

«Imatek Ltd», Великобритания.

Unit F, Nup End Business Centre, Old Knebworth, Herts SG3 6QJ

Тел. +44 (0) 1438 821624, факс +44 (0) 1438 829054.

E-mail: info@imatek.co.uk, web: www.imatek.co.uk

Заявитель

ЗАО НПХ «УСПС»

454000, г. Челябинск, ул. Академика Королева, 3

Тел/факс: (351) 729-82-82, 729-82-82

Web: info@usps.ru

Испытательный центр

ООО «ТестИнТех» 123308, Москва, ул.Мневники, д.1 ИНН 7734656656, КПП 773401001 Аттестат аккредитации № 30149-11.

Заместитель

Руководителя Федерального агентства по техническому регулированию и метрологии