

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.31.005.A № 51152

Срок действия до 24 июня 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Потенциостаты-интеграторы кулонометрические "ПИК-200"

ИЗГОТОВИТЕЛЬ

Федеральное Государственное Унитарное предприятие "Производственное объединение "Маяк" (ФГУП "ПО "МАЯК"), г.Озерск, Челябинская обл.

РЕГИСТРАЦИОННЫЙ № 53859-13

ДОКУМЕНТ НА ПОВЕРКУ МП 95-223-2012

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **24 июня 2013 г.** № **610**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства	Ф.В.Булыг	улыги
	""	

Серия СИ

№ 010235

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Потенциостаты-интеграторы кулонометрические «ПИК-200»

Назначение средства измерений

Потенциостаты-интеграторы кулонометрические «ПИК-200», (далее - потенциостаты-интеграторы), предназначены для измерения массовой доли основного компонента в металлах, сплавах и химических соединениях методом кулонометрии с контролируемым потенциалом.

Описание средства измерений

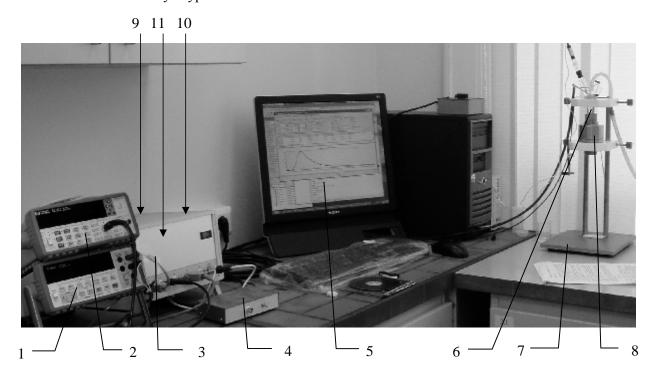
Принцип действия потенциостата-интегратора основан на использовании закона Фарадея, согласно которому масса анализируемого вещества прямо пропорциональна количеству электричества, затраченному на проведение электрохимической реакции. Массовая доля основного компонента измеряется путем проведения электролиза растворов с контролируемым потенциалом рабочего электрода и измерения количества электричества, затраченного на электролиз.

В состав потенциостата-интегратора входят электронный блок потенциостата, электролитическая ячейка, магнитная мешалка ММ-02, штатив ШЛ-08, мультиметр Agilent 34401A, частотомер электронно-счетный Agilent 53131A и сервисный модуль МС-08. Электронный блок потенциостата-интегратора конструктивно выполнен в едином корпусе со съемной верхней крышкой и передней панелью. Внутри корпуса размещены: плата потенциостата, плата шунтовых резисторов, источник питания.

Электролиз раствора пробы анализируемого вещества проводится в трёхэлектродной электролитической ячейке, которая выполнена в виде стеклянного стаканчика с введёнными металлическими электродами (вспомогательный, рабочий) и электродом сравнения. Металлические электроды выполнены сетчатыми из платины или золота. Рабочий электрод помещён непосредственно в раствор с пробой, а электроды вспомогательный и сравнения отделены мембраной от раствора с пробой. В процессе электролиза поддерживается заданный потенциал рабочего электрода, а ток через электролитическую ячейку экспоненциально уменьшается в процессе электролиза до величины фонового тока ячейки. Интегрирующее устройство, включенное в цепь вспомогательного электрода, измеряет общее количество электричества, затраченного на электролиз. Допускается круглосуточная работа потенциостата-интегратора.

Потенциостаты-интеграторы могут использоваться при определении метрологических характеристик стандартных образцов.

Обработка данных и управление работой потенциостата-интегратора осуществляется с помощью персонального компьютера, работающего в среде Windows, и программного обеспечения — пакета программ СРСLab2004. Внешняя ПЭВМ подключается к электронному блоку потенциостата-интегратора по интерфейсу RS-232C.


Для защиты от несанкционированного доступа в целях предотвращения вмешательств, которые могут привести к искажению результатов измерений, осуществляется пломбирование верхней крышки корпуса потенциостата-интегратора в месте ее крепления.

Фотография общего вида, схема пломбировки от несанкционированного доступа и место нанесения оттисков клейм или размещения наклеек приведены на рисунке 1.

Программное обеспечение

Наименование	Идентифика-	Номер версии	Цифровой	Алгоритм
программного	ционное	(идентифика-	идентификатор	вычисления
обеспечения	наименование	ционный	программного	цифрового
(ПО)	программного	номер)	обеспечения	индентификатора
	обеспечения	программного	(контрольная сумма	программного
		обеспечения	исполняемого кода)	обеспечения
CPCLab2	2004.exe	1.0.0.279	3A728935751485EC D017497CB0D69EC2	MD5Hasher.exe

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

- 1 мультиметр цифровой Agilent 34401A
- 2 частотомер электронно-счетный Agilent 53131A
- 3 электронный блок потенциостата-интегратора
- 4 сервисный модуль МС-08
- 5 ПЭВМ
- 6 электролитическая ячейка с электродами
- 7 штатив ШЛ-08
- 8 магнитная мешалка ММ-02
- 9,10 места пломбировки от несанкционированного доступа
- 11 место нанесения оттисков клейм или размещения наклеек

Рисунок 1 – Внешний вид потенциостата-интегратора кулонометрического «ПИК-200»:

- схема пломбировки от несанкционированного доступа
- место нанесения оттисков клейм или размещения наклеек

Метрологические и технические характеристики

т.	Значение
Наименование характеристики	характеристики
1	2
Диапазон измерений массовой доли основного компонента, %	от 99,0 до 100,0
Пределы допускаемой абсолютной погрешности при измерении	
массовой доли основного компонента, %	±0,1
Пределы выходного напряжения, В	±35
Пределы выходного тока, А	<u>±1</u>
Диапазон задаваемых потенциалов (с дискретностью 1 мВ), В	от минус 2 до 2
Пределы допускаемой абсолютной погрешности установки	
потенциала рабочего электрода, мВ	±1
Пределы допускаемой абсолютной погрешности поддержания	
установленного потенциала рабочего электрода при изменении	
выходного тока в пределах от 2 мА до 1 А, мВ	±0,5
Значение градуировочного коэффициента (определяется для	
конкретного значения токового шунта), мКл/имп	от 0,1000 до 0,4000
Предел допускаемого среднего квадратического отклонения	
(СКО) случайной составляющей относительной погрешности	
градуировочного коэффициента, %	0,005
Предел допускаемого СКО относительной погрешности	
нелинейности интегрирования, %	0,01
Предел допускаемого СКО случайной составляющей отно-	
сительной погрешности временного интервала Т (в диапазоне	0.0005
от 50 до 1000 с), %	0,0005
Сопротивление встроенного прецизионного резистора для	10.000 0.000
градуировки, Ом	$10,000 \pm 0,002$
Время установления рабочего режима, мин, не более	30
Параметры электрического питания: от сети переменного тока	05 064
- напряжением, В	от 85 до 264
- частотой, Гц	от 47 до 440
Потребляемая мощность (на максимальном выходном токе),	70
Вт, не более Габаритные размеры, мм, не более:	70
- электронного блока потенциостата-интегратора	$310 \times 165 \times 270$
- электронного олока потенциостата-интегратора - сервисного модуля МС-08	$150 \times 35 \times 90$
Масса, кг, не более	130 ^ 33 ^ 30
- электронного блока потенциостата-интегратора	5,0
- сервисного модуля МС-08	0,60
Средний срок службы, лет, не менее	7
Среднии срок служов, лет, не менее	12000
T	12000

Примечания:

¹ По способу защиты человека от поражения электрическим током изделие относится к классу I по Γ OCT 12.2.007.0 – 75;

² Допускается непрерывная круглосуточная работа в условиях эксплуатации по 1.2.26 руководства по эксплуатации СКБ-782 РЭ.

Знак утверждения типа

наносится на титульный лист Руководства по эксплуатации СКБ-782 РЭ печатным способом, а также на лицевую панель потенциостата-интегратора в виде наклейки.

Комплектность средства измерений

Комплект поставки определяется заказом, отражается в паспорте и соответствует описи, вложенной в контейнер с потенциостатом-интегратором.

В комплект поставки входят:

Наименование	Обозначение	Количество, шт.
Потенциостат-интегратор «ПИК-200» в составе:		1
-электронный блок потенциостата	СКБ-782	1
-сервисный модуль МС-08	СКБ-828	1
- частотомер электронно-счетный Agilent 53131A		1
-мультиметр Agilent 34401A		1
-персональный компьютер		1
-компакт-диск с программным обеспечением	CPCLab2004	1
кабели (комплект)	СКБ-971-979	1
-электролитическая ячейка (комплект)		1
-запасные инструменты и принадлежности (комплект)		1
-штатив ШЛ-08	СКБ-836	1
-магнитная мешалка ММ-02	СКБ-795	1
Руководство по эксплуатации	СКБ-782 РЭ	1
Руководство оператора	СКБ-782-02 34 02	1
Методика поверки СКБ-782	МП 95-223-2012	1
Паспорт	СКБ-782 ПС	1

Поверка

осуществляется по документу МП 95-223-2012 «ГСИ. Потенциостаты-интеграторы кулонометрические «ПИК-200». Методика поверки СКБ-782», утвержденному ФГУП «УНИИМ» в 2013 году.

Эталоны, используемые при поверке:

Компаратор сопротивления Р 3015, диапазон сравниваемых сопротивлений от 0,01 до $10\,000\,000$ Ом, пределы основной погрешности \pm (0,01-0,0001) %;

Мера сопротивления Р 3030, номинальное значение 10 Ом, класс точности – 0,002;

Цифровой мультиметр Agilent 34401A: пределы измерения постоянного напряжения 0,1; 1,0; 10; 100; 1000 В и пределы отн. погрешности от показания соответственно $\pm 0,0030$ %; $\pm 0,0020$ %; $\pm 0,0020$ %; $\pm 0,0020$ %; пределы измерения постоянного тока 10; 100 мA; 1; 3 А и пределы отн. погрешности от показания соответственно $\pm 0,005$ %; $\pm 0,010$ %; $\pm 0,050$ %; $\pm 0,0100$ %;

Частотомер электронно-счетный Agilent 53131A с пределами измерения временного интервала от 1 нс до 10^5 с; пределы отн. погрешности $\pm 0{,}00001$ %;

Стандартный образец состава железа высокой чистоты ГСО 9497-2009. Аттестованная характеристика: массовая доля железа – 99,98 %; абс. погрешность при $P = 0,95 - \pm 0,04$ %;

Весы лабораторные электронные CP225 D «Sartorius»I (специального) класса точности, $Hm\Pi B - 0,001$ г, $H\Pi B - 210$ г, пределы допускаемой абсолютной погрешности \pm 0,00006 г (при взвешивании от 0,001 г до 20 г включительно).

Сведения о методиках (методах) измерений

МВИ 223.09.10.173/2010 «ГСИ. Железо высокой чистоты. Методика измерений массовой доли основного вещества методом кулонометрии с контролируемым потенциалом», утвержденная Φ ГУП «УНИИМ» в 2010 году.

Метод измерений представлен в Руководстве оператора СКБ-782-02 34 02 «Потенциостаты-интеграторы кулонометрические «ПИК-200». Программное обеспечение CPCLab2004».

Нормативные и технические документы, устанавливающие требования к потенциостатаминтеграторам кулонометрическим «ПИК-200»

ГОСТ Р 52931-2008 «Приборы контроля и регулирования технологических процессов. Общие технические условия».

ТУ 4215-012-07622740-2010 «Потенциостаты-интеграторы кулонометрические «ПИК-200». Технические условия»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Вне сферы государственного регулирования обеспечения единства измерений.

Изготовитель

Федеральное Государственное Унитарное предприятие «Производственное объединение «Маяк» (ФГУП «ПО «МАЯК»),

456780, г. Озёрск, Челябинской области, ул. Ленина, д. 31.

Тел./факс: (35130) 2-69-93

Испытательный центр

Государственный центр испытаний средств измерений – ФГУП «Уральский научно-исследовательский институт метрологии» (ГЦИ СИ ФГУП «УНИИМ»)

620000, Россия, г. Екатеринбург, ул. Красноармейская, 4.

тел. (343) 350-26-18, факс (343) 350-20-39, e-mail: uniim@uniim.ru.

Аккредитован в соответствии с требованиями Федерального агентства по техническому регулированию и метрологии и зарегистрирован в Государственном реестре средств измерений под $N \ge 30005$ -11. Аттестат аккредитации от 03.08.2011.

Заместитель
Руководителя Федерального
агентства по техническому
регулированию и метрологии

>>	2013 г.

Ф.В. Булыгин