

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.C.27.002.A № 51176

Срок действия до 24 июня 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ КОМПЛЕКСЫ НАЗЕМНЫХ И ЛЕТНЫХ ПРОВЕРОК (КНЛП) КНТА.466539.014

ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью "НППФ Спектр", г.Москва

РЕГИСТРАЦИОННЫЙ № 53879-13

ДОКУМЕНТ НА ПОВЕРКУ КНТА.466539.014

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **24 июня 2013 г.** № **610**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Ф.В.Булыги
Федерального агентства		
	11 11	2013 г.

№ **010251**

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплексы наземных и летных проверок (КНЛП) КНТА.466539.014

Назначение средства измерений

Комплексы наземных и летных проверок (далее – КНЛП) предназначены для определения собственных геодезических координат пунктов размещения аппаратуры, координат локальных контрольно-корректирующих станций (ЛККС) и количественной оценки параметров сигналов глобальных навигационных спутниковых систем (ГНСС) ГЛОНАСС/GPS/Galileo, и их космических (SBAS) и наземных (GBAS) функциональных дополнений.

Описание средства измерений

КНЛП является программно-аппаратным комплексом для количественной оценки параметров сигналов, формируемых и передаваемых ЛККС и SBAS, которые используются в качестве основного средства навигации на трассе полетов, в районе аэродромов, в т.ч. для обеспечения захода на посадку, в период их испытаний и эксплуатации.

КНЛП обеспечивает прием и обработку с частотой не менее 2 Γ ц навигационных сигналов спутников ГНСС: ГЛОНАСС в частотных диапазонах (1602,56 - 1615,50) МГц (L_1), (1246,00 - 1256,50) МГц (L_2) и 1202,025 МГц (L_3); GPS NAVSTAR на частотах 1575,42 МГц (L_1), 1227,60 МГц (L_2) и 1176,45 МГц (L_5); опционально – Galileo в частотных диапазонах 1559 - 1592 МГц (E_1) и (1164 - 1215) МГц (E_5). Также КНЛП обеспечивает прием и обработку сигналов корректирующей информации ЛККС и/или функциональных дополнений SBAS (WAAS, EGNOS, MSAS, SDCM). Используется автономно либо в составе автоматизированной системы летного контроля (АСЛК), самолета/вертолета – лаборатории, или специально выделенного воздушного судна.

КНЛП по результатам измерений осуществляет количественную оценку следующих параметров навигации воздушного судна: абсолютной погрешности определения местоположения в дифференциальном режиме ГНСС; напряженности радиополя, создаваемого ЛККС и/или функциональными дополнениями SBAS; соответствия принятых и измеренных аппаратурой приема дифференциальных данных (АПДД) и назначенных ЛКСС и/или функциональными дополнениями параметров; величин отклонения от линии заданного пути (ЛЗП) воздушного судна. При обработке полученной измерительной информации определяется наличие (или отсутствие) помех в диапазоне частот спутниковых навигационных сигналов.

По данным измерений КНЛП вычисляет координаты местоположения в автономном и/или дифференциальном режимах, сравнивает расчетные координаты с установленными координатами фазового центра антенны в системах координат ПЗ 90.02 или WGS-84 и вычисляет величины отклонений. Если отклонения не превышают установленных допусков к точности навигации воздушного судна на различных этапах его полета (типовые операции полета – полет по трассе, маневрирования в зоне аэродрома, заход на посадку и т.д.), комплекс формирует и отображает на экране дисплея информацию с признаком допустимости конкретной операции; если отклонения превышают установленный допуск, то передается информация с признаком недопустимости операции. КНЛП определяет величины расхождения измеренных в дифференциальном режиме и опорных геодезических координат как в реальном времени, так и в режиме пост-обработки.

Аппаратура КНЛП, кроме антенно-фидерных устройств (АФУ), выполнена в едином конструктивном модуле, заключенном в защитный пластиковый контейнер. Модуль включает следующие блоки: навигационный блок спутниковых приемников (БСП); блок вычислительно-коммутационных устройств (БВКУ) с операционной системой жесткого реального времени, включая дисплей с сенсорным экраном; блок преобразователей АЦП/ЦАП; блок АПДД - калиброванный приемник VDB. Внешними устройствами в со-

ставе КНЛП являются АФУ: геодезическая приемная антенна, обеспечивающая работу БСП; антенна УКВ-диапазона, обеспечивающая работу АПДД; антенные кабели.

На рабочей панели КНЛП имеются клавиши включения и выключения, сенсорный экран дисплея и разъемы для подключения антенн, внешнего компьютера и локальной вычислительной сети. Кроме того, на панели имеются дополнительные сервисные разъемы для ввода и вывода аналоговых и цифровых сигналов стандарта ARINC 429 по ГОСТ 18977-79. Управление работой КНЛП производится с помощью сенсорной панели встроенного компьютера БВКУ.

КНЛП принимает корректирующую информацию функциональных дополнений в формате, соответствующем SARP's на GNSS ИКАО (Приложение 10, том I). Также КНЛП предоставляет пользователю интерфейс MIL-STD-1553B (опционально).

Внешний вид КНЛП, места для пломбировки и наклейки со знаком об утверждении типа приведены на рисунке 1.

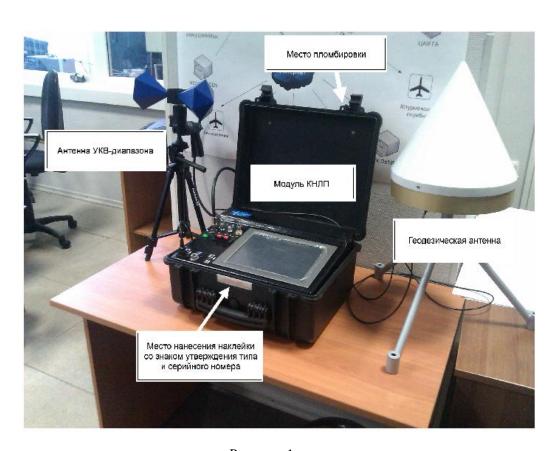


Рисунок 1

Программное обеспечение

В КНЛП используются два отдельных вычислителя, для каждого из которых имеется свое встроенное прикладное программное обеспечение (ПО). Основной вычислитель, построенный на основе стандарта РС/104, предназначен для выполнения процессов реального времени и обработки измерений. Для основного вычислителя предназначено встроенное прикладное ПО «FLYER». Дополнительный вычислитель в составе БВКУ моноблока предназначен для пользовательского ввода/вывода и генерации отчетов. Для дополнительного вычислителя предназначено встроенное прикладное ПО «FLYER GUI». Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню А по МИ 3286-2010. Идентификационные данные ПО приведены в таблице 1.

Таблица 1

Наименование	Идентифика-	Номер версии	Цифровой иден-	Алгоритм вы-
ПО	ционное	(идентификаци-	тификатор ПО	числения цифро-
	наименование	онный номер)	(контрольная	вого идентифи-
	ПО	ПО	сумма)	катора ПО
Прикладное ПО обработки измерений реального времени КНЛП	FLYER	1.0-160- ga9d8279	78e099f7cb855c4 93b775ac7ea10f0 7d * flyer.master- 1.0-160- ga9d8279.tbz2	MD5: RFC1321
Прикладное ПО пользова- тельского ввода/вывода КНЛП	FLYER GUI	1.0-160- ga9d8279	2dd3007d1548b1 36265fdc6c237c3 ef8 * flyer_gui.master -1.0-160- ga9d8279.tbz22	MD5: RFC1321

Метрологические и технические характеристики

Метрологические и технические характеристики КНЛП приведены в таблице 2.

Таблица 2

Наименование характеристики	Значение
Принимаемые сигналы ГНСС:	
Код и фаза несущей на частотах GPS	1575,42 МГц (L ₁), 1227,60
	$M\Gamma$ ц (L_2), 1176,45 $M\Gamma$ ц (L_5)
Код и фаза несущей в частотных диапазонах ГЛОНАСС	(1602,56 - 1615,50) МГц (L ₁)
	$(1246,00-1256,50)$ МГц (L_2)
	1202,025 МГц (L ₃)
Код и фаза несущей в частотных диапазонах Galileo (оп-	$(1559 - 1592) MГц (E_1)$
ционально)	(1164 - 1215) МГц (E ₅)
SBAS L ₁ (WAAS\EGNOS\MSAS\SDCM)	1575,42 МГц (L ₁)
Принимаемые сигналы УКВ (VDB)	(108-118) МГц
Дифференциальное позиционирование реального времени	
с использованием сигналов SBAS	
Пределы допускаемой абсолютной погрешности (при	
доверительной вероятности 0,95) определения координат	
пунктов, м:	
в плане	± 1
по высоте	± 1
Дифференциальное позиционирование реального времени	
(RTK) с использованием сигналов GBAS	
Пределы допускаемой абсолютной погрешности (при	
доверительной вероятности 0,95) определения прираще-	
ний координат пунктов, м, не более:	
в плане	± 0,40
по высоте	± 0,25
Дифференциальное позиционирование с пост-	
обработкой (относительный метод)	
Пределы абсолютных допускаемых значений довери-	

Наименование характеристики	Значение
тельных границ погрешности средства измерений (при	
доверительной вероятности 0,95) δ, мм	
в плане	(2 7 10-7 1)
по высоте	$\pm (3 + 5.10^{-7} \cdot L)$
	$\pm (5 + 5 \cdot 10^{-7} \cdot L)$
	L – измеряемая длина между
	пунктами в мм
Пределы допускаемой относительной погрешности из-	
мерения напряженности радиополя в диапазоне частот	
(108 - 118) МГц с шагом между каналами 25 кГц, дБ	± 3,0
Параметры электропитания:	
напряжение переменного тока, В	220±22
частота переменного тока, Гц	50±1
(или) напряжение постоянного тока, В	27
Габаритные размеры (длина×ширина×высота), мм,	520×440×240
Масса, кг, не более	15
Диапазон рабочих температур, °С	от 5 до 40

Знак утверждения типа

Знак утверждения типа наносится ООО «НППФ Спектр» в верхнем левом углу Руководства по эксплуатации КНТА.466539.014 типографским способом и на фронтальную панель корпуса КНЛП в виде наклейки.

Комплектность средства измерений

Комплект поставки приведен в таблице 3.

Таблица 3

Наименование	Количество
Комплекс наземных и летных проверок (КНЛП) КНТА.466539.014	1 шт.
Антенна приемная сигналов ГНСС внешняя типа Choke Ring	1 шт.
Колпак защитный для антенны	1 шт.
Кабель антенный 3, 5, 10 или 30 метров	1 шт. (по заказу)
Антенна приемная УКВ-диапазона выносная с мачтой (либо встро-	1 шт. (по заказу)
енная)	
Кабель антенный до 50 метров	1 шт. (по заказу)
Одиночный комплект ЗИП	1 комплект
Прикладное ПО КНТА.00219.036	1 комплект
Ведомость эксплуатационной документации КНТА 466539.014 ВЭ	1 шт.
Ведомость ЗИП КНТА 466539.014 ЗИ	1 шт.
Руководство по эксплуатации КНТА 466539.014 РЭ	1 шт.
Формуляр КНТА 466539.014 ФО	1 шт.

Поверка

Осуществляется по документу КНТА.466539.014 «Инструкция. Комплексы наземных и летных проверок (КНЛП). Методика поверки», утвержденному ГЦИ СИ ФГУП ВНИИФТРИ 20.11.2012 г. Основные средства поверки: имитаторы сигналов ГНСС СН-3803М и GSS8000, ПГ воспроизведения беззапросной дальности - $\Delta \le 1 \cdot 10^{-1}$ м; Эталонный стенд испытаний приемной КНС-аппаратуры (ОСПАС), диапазон длин базисов ОСПАС – (24 – 10000) м, ПГ взаимного положения пунктов - $\Delta \le 1 \cdot 10^{-2}$ м.

Сведения о методиках (методах) измерений

Руководство по эксплуатации КНТА 466539.014 РЭ.

ГОСТ Р 53606-2009. «Глобальная навигационная спутниковая система. Методы и технологии выполнения геодезических и землеустроительных работ. Метрологическое обеспечение. Основные положения».

Нормативные и технические документы, устанавливающие требования к комплексам наземных и летных проверок (КНЛП) КНТА.466539.014

- 1 ГОСТ Р 53340-2009. Приборы геодезические. Общие технические условия.
- 2 Стандарты ИКАО на ГНСС, Приложение 10, том I «Авиационная электросвязь».
- 3 ГОСТ Р 8.750-2011 «ГСИ. Государственная поверочная схема для координатновременных средств измерений»
- 4 Комплекс наземных и летных проверок (КНЛП) КНТА.466539.014. Технические условия КНТА.466539.014 ТУ.

Рекомендации по области применения в сфере государственного регулирования обеспечения единства измерений

Осуществление геодезической деятельности, в том числе определение геодезических координат в целях обеспечения полетов летательных аппаратов, а также при проведении испытаний средств навигации.

Изготовитель

Общество с ограниченной ответственностью «НППФ Спектр», г. Москва.

Юридический (почтовый) адрес: 125154, г. Москва, б-р Генерала Карбышева, д. 9, корп. 1, оф.7. Тел./факс: 8 (499) 199-00-55. E-mail: <u>avia@nppf-spectr.ru</u>.

Испытательный центр

Государственный центр испытаний средств измерений Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт физикотехнических и радиотехнических измерений» (ГЦИ СИ ФГУП «ВНИИФТРИ»). Аттестат аккредитации №30002-08 от 04.12.2008г.

Юридический (почтовый) адрес: 141570, Московская обл., Солнечногорский р-н, гор. пос. Менделеево. Тел./факс (495) 744-81-12. E-mail: office@vniiftri.ru.

Заместитель Руководителя
Федерального агентства по техническому
регулированию и метрологии

Ф. В. Булыгин

« » 2013 г.