

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

US.C.35.010.A № 51211

Срок действия до 26 июня 2018 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Измерители коэффициентов отражения и передачи модульные NI PXIe-5632

ИЗГОТОВИТЕЛЬ

Компания "National Instruments Corporation", США

РЕГИСТРАЦИОННЫЙ № 53905-13

ДОКУМЕНТ НА ПОВЕРКУ МП РТ 1907-2013

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **26 июня 2013 г.** № **650**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства		Ф.В.Булыгин		
	H	2013 г.		

Nº 010305

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители коэффициентов отражения и передачи модульные NI PXIe-5632

Назначение средства измерений

Измерители коэффициентов отражения и передачи модульные NI PXIe-5632 предназначены для измерения коэффициентов отражения и передачи в коаксиальных трактах.

Описание средства измерений

Принцип действия измерителей коэффициентов отражения и передачи модульных NI PXIe-5632 основан на сравнении амплитуды и фазы сигнала, подаваемого на вход исследуемого устройства, с амплитудой и фазой сигнала, отраженного от входа устройства либо поступающего с его выхода. Тестовый сигнал формируется высокостабильным генератором на фиксированной частоте или в выбранной полосе частот с непрерывной либо однократной разверткой независимо в каждом из двух идентичных каналов. При двухпортовом подключении может быть выполнено одновременное измерение всех комплексных коэффициентов отражения и передачи S_{11} , S_{22} , S_{21} , S_{12} , либо измерение отдельно выбранных параметров. Представление комплексных параметров производится в полярных координатах (модуль и фаза) или в декартовых координатах (действительная и мнимая части), а также в виде полного сопротивления на диаграмме Смита и группового времени задержки.

Управление режимами, задание форматов представления измерительной информации могут производиться с виртуальной панели или дистанционно по шине PXI Express.

Конструктивно измерители коэффициентов отражения и передачи модульные NI PXIе-5632 выполнены в виде экранированной печатной платы, на которой закреплены лицевая панель с разъемами для присоединения сигнальных кабелей, и разъем интерфейса. Плата устанавливается в слоты шасси с шиной PXI Express компании "National Instruments".

Внешний вид измерителей коэффициентов отражения и передачи модульных NI PXIe-5632 показан на фотографии ниже. Пломбирование осуществляется путем нанесения специальной краски под винт на экранирующей панели. Знак поверки в виде наклейки размещается в свободной части лицевой панели.

место пломбирования

По условиям эксплуатации измерители коэффициентов отражения и передачи модульные NI PXIe-5632 соответствуют группе 3 ГОСТ 22261-94 с рабочим диапазоном температур от 0 до $55\,^{\circ}$ C.

Программное обеспечение

Программное обеспечение выполняет функции управления режимами работы, математические функции обработки, представления, записи и хранения измерительной информации.

Общие сведения о программном обеспечении приведены в таблице ниже.

' '' 1 1	1 ''
класс риска	А по WELMEC 7.2 для категории U
идентификационное наименование	NI-VNA
идентификационный номер версии	2.0.1 и выше

Метрологические и технические характеристики

измеряемые параметры: S_{11} , S_{22} , S_{21} , S_{12}			
формы представления величин: модуль и фаза в полярных и дека	ртовых координатах;		
КСВН; диаграмма Смита; групповое время задержки			
диапазон частот	от 300 кГц до 8,5 ГГц		
разрешение по частоте	1 Гц		
относительная погрешность частоты опорного генератора δ_0			
при температуре 23 ± 2 °C, не более	$\pm 2,5 \cdot 10^{-6}$		
относительный дрейф частоты опорного генератора δ_A за 1 год,			
не более	$\pm 3.10^{-6}$		
дополнительная относительная погрешность δ_T частоты	_		
опорного генератора в рабочем диапазоне температур, не более	$\pm 1.10^{-5}$		
пределы допускаемой относительной погрешности установки	$\pm (\delta_0 + \delta_{\mathrm{T}} + \mathbf{N} \cdot \delta_{\mathrm{A}}),$		
частоты генератора	N – к-во лет с даты выпуска		
	или подстройки		
дополнительная относительная погрешность частоты опорного	5		
генератора в диапазоне температур от 0 до + 55 °C, не более	$\pm 1.10^{-5}$		
внешняя синхронизация			
частота сигнала	10 МГц ± 50 Гц		
уровень сигнала синусоидальной формы	от – 10 до + 3 дБм		
уровень мощности тестового сигнала генератора			
на частотах от 300 кГц до 6 ГГц	от – 30 до + 15 дБм		
на частотах от 6 до 8 ГГц	от – 30 до + 12 дБм		
на частотах от 8 до 8,5 ГГц	от – 30 до + 10 дБм		
разрешение установки уровня тестового сигнала генератора	0,01 дБ		
относительная погрешность уровня мощности тестового сигнала генератора			
уровень 0 дБм	± 1 дБм		
прочие значения уровня, типовое значение	± 2 дБм		
уровень гармонических составляющих тестового сигнала (при уровне сигнала 0 дБм),			
не более, типовое значение			
на частотах от 300 кГц до 50 МГц	– 20 дБн		
на частотах от 50 МГц до 8,5 ГГц	– 30 дБн		
полоса пропускания на промежуточной частоте			
(дискретно с шагом 1, 3, 5, 7) от 10 Гц до 500 кГц			

примечание 1. здесь и далее сокращение «дБм» обозначает уровень мощности в дБ относительно 1 мВт

максимальное количество точек отсчетов на траектории	20001		
максимальное количество усреднений	4096		
направленность измерительного моста после калибровки, не менее			
на частотах до 5 ГГц	42 дБ		
на частотах от 5 до 8,5 ГГц	36 дБ		
динамический диапазон измерения коэффициента передачи (мако	симальный уровень тестового		
сигнала, полоса пропускания на промежуточной частоте 10 Гц)			
на частотах от 300 кГц до 500 кГц	90 дБ, типовое значение		
на частотах от 500 кГц до 3 ГГц	100 дБн		
на частотах от 3 до 6 ГГц	110 дБн		
на частотах от 6 до 8 ГГц	105 дБн		
на частотах от 8 до 8,5 ГГц	90 дБ, типовое значение		
пределы допускаемой погрешности измерения модуля коэффици	ента передачи		
(уровень тестового сигнала 0 дБм, полоса пропускания на промех	куточной частоте 10 Гц)		
от 0 до – 40 дБ на частотах до 5 ГГц	± 0,25 дБ		
от 0 до -30 дБ на частотах от 5 до $8,5$ $\Gamma\Gamma$ ц	± 0,4 дБ		
пределы допускаемой погрешности измерений КСВН в поверяемых точках			
(уровень тестового сигнала 0 дБм, полоса пропускания на промеж	куточной частоте 10 Гц)		
при КСВН = 1,4 на частотах до 5 ГГц	от – 4 до + 5 %		
при КСВН = 1,4 на частотах от 5 до 8,5 ГГц	от – 6 до + 7,5 %		
при КСВН = 2,0 на частотах до 5 ГГц	от – 6 до + 7,5 %		
при КСВН = 2,0 на частотах от 5 до 8,5 ГГц	от – 10 до + 13,5 %		
тип соединителей			
порт 1, порт 2	K(f) (2,92 мм), 50 Ом		
вход внешней синхронизации	SMA(f)		
габаритные размеры (высота х глубина х толщина), мм	130 x 216 x 60		
масса, не более	1290 г		
потребляемая мощность от шасси PXI Express, не более	70 Bt		
рабочие условия применения	группа 3 ГОСТ22261-94		
температура окружающей среды	от 0 до + 55 °C		
относительная влажность воздуха, без конденсата, не более	от 10 до 90 %		
предельная высота над уровнем моря	2000 м		
условия транспортирования и хранения			
температура окружающей среды	от – 40 до + 70 °C		
относительная влажность воздуха, без конденсата, не более	от 5 до 95 %		
электромагнитная совместимость	по ГОСТ Р 51522-99		
безопасность по ГОСТ Р 52319-2005			

примечание 2. здесь и далее сокращение «дБн» обозначает уровень мощности в дБ относительно уровня мощности на центральной частоте

Знак утверждения типа

Знак утверждения типа наносится на боковую панель корпуса в виде наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

наименование и обозначение	кол-во
измеритель коэффициентов отражения и передачи модульный NI PXIe-5632	1 шт.
компакт-диск с документацией и программным обеспечением NI-VNA	1 шт.

калибровочный модуль тип N или тип K	по заказу
принадлежности	по заказу
NI PXIe-5632. Руководство по эксплуатации 375885A-01R	1 шт.
методика поверки МП РТ 1907-2013	1 шт.

Поверка

осуществляется по документу МП РТ 1907-2013 «Измерители коэффициентов отражения и передачи модульные NI PXIe-5632», утвержденному руководителем ГЦИ СИ ФБУ «Ростест-Москва» $14.05.2013~\Gamma$.

Средства поверки

Средства поверки	,
средство поверки и требования к его метрологическим характеристикам	рекомендуемое средство поверки и его метрологические характеристики
меры КСВН 1,4 \pm 0,1; 2,0 \pm 0,1 диапазон частот от 10 МГц до 8,5 ГГц; относительная погрешность определения действительного значения КСВН 1,4 на частотах до 5 ГГц не более \pm 1,5 %; на частотах от 5 до 8,5 ГГц не более \pm 2 %; относительная погрешность определения действительного значения КСВН 2,0 на частотах до 5 ГГц не более \pm 2 %; на частотах от 5 до 8,5 ГГц не более \pm 3 %	нагрузки с КСВН $1,4\pm0,05$; $2,0\pm0,05$ из комплекта мер КСВН и полного сопротивления ЭК9-140 диапазон частот от 0 до 4 ГГц; относительная погрешность определения действительного значения КСВН $1,4$ не более ±1 %, КСВН $2,0$ не более $\pm1,5$ % нагрузки с КСВН $1,4\pm0,05$; $2,0\pm0,05$ из комплекта мер КСВН и полного сопротивления ЭК9-145 диапазон частот от 4 до 18 ГГц; относительная погрешность определения действительного значения КСВН не более ±1 %
аттенюатор 20 дБ диапазон частот от 10 МГц до 8,5 ГГц; погрешность определения действительного значения ослабления на частотах до 5 ГГц не более \pm 0,1 дБ; на частотах от 5 до 8,5 ГГц не более \pm 0,15 дБ; КСВН не более 1,25	аттенюатор коаксиальный Agilent 8191B-020 номинальное значение 20 дБ; погрешность определения действительного значения ослабления на частотах от 0 до 12,4 ГГц не более ± 0,09 дБ; КСВН на частотах от 0 до 8 ГГц не более 1,2
$\frac{\text{стандарт частоты}}{\text{относительная погрешность частоты}}$ 10 МГц не более $\pm 1\cdot 10^{-8}$; уровень сигнала от 0 до ± 10 дБм	стандарт частоты рубидиевый Stanford Research Systems FS725 выходной сигнал частотой 10 МГц; годовой дрейф частоты не более $\pm 1 \cdot 10^{-10}$; уровень сигнала $+ 7$ дБм
частотомер разрешение на частоте 4 ГГц не хуже 100 Гц; вход внешней синхронизации 10 МГц	частотомер электронно-счетный Agilent 53181A с опцией 050 разрешение 1 Гц на частоте 4 ГГц; вход внешней синхронизации 10 МГц

Сведения о методиках (методах) измерений

Методы измерений изложены в разделах руководства по эксплуатации NI PXIe-5632.

Нормативные документы, устанавливающие требования к измерителям коэффициентов отражения и передачи модульным NI PXIe-5632

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ 8.129-99. ГСИ. Государственная поверочная схема для средств измерений времени и частоты.

МИ 1700-87. ГСИ. Государственная поверочная схема для средств измерений полного сопротивления в коаксиальных волноводах поперечного сечения 16/6,95; 16/4,58; 7/3,04 и 3,5/1,52 мм в диапазоне частот 0,02-18,00 ГГц.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Компания "National Instruments Corporation", США; 11500 North Morac Expway, Austin, Texas, 78759-3504, USA, тел. 1-512-683-0100, факс 1-512-683-9411, e-mail info@ni.com

ЗАО «АКТИ-Мастер»; 125438, г. Москва, 4-й Лихачевский пер., 15, стр. 3; тел./факс (499)154-74-86

Испытательный центр

ГЦИ СИ Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве (ФБУ «Ростест-Москва»), аттестат аккредитации № 30010-10 от 15.03.2010 г.;

117418 Москва, Нахимовский пр., 31; тел. (499)129-19-11, факс (499)129-99-96

Заместитель				
Руководителя Федерального				
агентства по техническому				Ф.В. Булыгин
регулированию и метрологии				
	М.п.	« <u></u>	»	2013 г.