

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.022.A № 51233

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ТК "Академический"

ЗАВОДСКОЙ НОМЕР 001

ИЗГОТОВИТЕЛЬ

Закрытое акционерное общество "ОВ" (ЗАО "ОВ"), г.Санкт-Петербург

РЕГИСТРАЦИОННЫЙ № 53927-13

ДОКУМЕНТ НА ПОВЕРКУ МИ 3000-2006

интервал между поверками 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 26 июня 2013 г. № 650

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства	Ф.В.Булыгин
	"" 2013 г.

No 010348

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ТК «Академический»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии и мощности ТК «Академический» (далее АИИС КУЭ) предназначена для измерения активной и реактивной электрической энергии и мощности, потребленной отдельными технологическими объектами ТК «Академический», сбора, обработки, хранения полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, многоуровневую систему с централизованным управлением и распределенной функцией измерения.

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электрической энергии;
- периодический (1 раз в 30 мин, 1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электрической энергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- предоставление по запросу контрольного доступа к результатам измерений данных о состоянии средств измерений со стороны организаций-участников розничного рынка электрической энергии;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
 - диагностика функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение единого времени в АИИС КУЭ (коррекция времени).

АИИС КУЭ включает в себя следующие уровни:

- 1-й уровень информационно-измерительный комплекс точек измерений (ИИК):
- трансформаторы тока (TT);
- счётчики электрической энергии трехфазные многофункциональные Альфа А1800.
- 2-й уровень информационно-вычислительный комплекс системы (ИВК):
- каналообразующая аппаратура;
- центр сбора и обработки информации (далее ЦСОИ) с автоматизированным рабочим местом (далее APM);
 - ПО «АльфаЦЕНТР».

Первичные фазные токи трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы счётчиков электрической энергии трехфазных многофункциональных типа Альфа A1800.

Измерение активной мощности (Р) счетчиком электрической энергии, выполняется путём перемножения мгновенных значений сигналов напряжения (u) и тока (i) и интегрирования полученных значений мгновенной мощности (p) по периоду основной частоты сигналов.

Счетчик производит измерение действующих (среднеквадратических) значений напряжения (U) и тока (I) и рассчитывает полную мощность $S = U \cdot I$.

Реактивная мощность (Q) рассчитывается в счетчике по алгоритму $Q = (S^2 - P^2)^{0.5}$.

Средние значения активной и реактивной мощностей рассчитываются путем интегрирования текущих значений Р и Q на 30-минутных интервалах времени.

Цифровой сигнал с выходов счетчиков по проводным линиям поступает на верхний уровень системы.

На верхнем – втором уровне системы выполняется последующее формирование и хранение поступающей информации, оформление справочных и отчетных документов.

Передача данных осуществляется по телефонной сети общего пользования (ТФОП) или каналу передачи данных стандарта GSM на APM службы эксплуатации энергосистемы ТК «Академический» и в центр сбора и обработки данных гарантирующего поставщика.

Коррекция часов счетчиков производится от часов сервера базы данных (БД) гарантирующего поставщика в ходе опроса. Коррекция выполняется автоматически, если расхождение часов сервера БД и часов счетчиков АИИС КУЭ превосходит ±2 с. Факт каждой коррекции регистрируется в журнале событий счетчиков и АРМ АИИС КУЭ.

Журналы событий счетчиков электрической энергии отражают: время (дата, часы, минуты) коррекции часов и расхождение времени в секундах корректируемого и корректирующего устройств в момент непосредственно предшествующий корректировке.

Состав измерительных каналов приведен в табл. 1.

Таблица 1

Номер	Наименование	Coo		
ИК	объекта	Трансформатор тока	Счетчик	Уровень ИВК
1	2	3	4	5
1	ГРЩ-1 Ввод 1	Т-0,66 У3; 1500/5; КТ 0,5S, ГОСТ 7746-2001; Госрестр СИ№22656-07; зав. № 028524 зав. № 028525 зав. № 028526	Альфа A1800 A1805RAL-P4G-DW-4; Iном (Імакс) = 5 (10) A; Uном = 3 × 220/380 B; KT: по активной энергии – 0,5S, ГОСТ Р 52323-2005; по реактивной – 1,0, ГОСТ Р 52425-2005; Госреестр СИ № 31857-06, зав. № 01 192 787	Каналообразующая аппаратура, АРМ, ПО «АльфаЦЕНТР»,
2	ГРЩ-1 Ввод 2	Т-0,66 У3; 1500/5; КТ 0,5S, ГОСТ 7746-2001; Госресстр СИ№22656-07; зав. № 035887 зав. № 035888 зав. № 035889	Альфа А1800 А1805RAL-P4G-DW-4; Іном (Імакс) = 5 (10) А; Uном = 3х220/380 В; КТ: по активной энергии – 0,5S, ГОСТ Р 52323-2005; по реактивной – 1,0, ГОСТ Р 52425-2005; Госреестр СИ № 31857-06; зав. № 01 192 783	Госреестр СИ № 20481-00

Продолжение таблицы 1

1	2	3	4	5
3	ГРЩ-2 Ввод 1	T-0,66 Y3; 1000/5; KT 0,5S, FOCT 7746-2001; Focpeecip CU№ 22656-07; 3ab. № 028527 3ab. № 028528 3ab. № 028529	Альфа А1800 A1805RAL-P4G-DW-4; Іном (Імакс) = 5 (10) A; Uном = 3 × 220/380 B; КТ: по активной энергии – 0,5S, ГОСТ Р 52323-2005; по реактивной – 1,0, ГОСТ Р 52425-2005; Госреестр СИ № 31857-06, зав. № 01 165 841	Каналообразующая аппаратура, АРМ,
4	ГРЩ-2 Ввод 2	T-0,66 Y3; 1000/5; KT 0,5S, FOCT 7746-2001; Focpeecip CU№ 22656-07; 3ab. № 028530 3ab. № 028531 3ab. № 028532	Альфа А1800 A1805RAL-P4G-DW-4; Іном (Імакс) = 5 (10) A; Uном = 3 × 220/380 B; КТ: по активной энергии – 0,5S, ГОСТ Р 52323-2005; по реактивной – 1,0, ГОСТ Р 52425-2005; Госреестр СИ № 31857-06; зав. № 01 186 733	ПО «АльфаЦЕНТР», Госреестр СИ № 20481-00

Примечание – Допускается замена измерительных трансформаторов и счетчиков на аналогичные, утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в табл. 1. Замена оформляется актом. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Программное обеспечение

ПО «АльфаЦЕНТР» осуществляет автоматический параллельный опрос счетчиков электроэнергии с использованием различных типов каналов связи и коммуникационного оборудования, расчет электроэнергии с учетом временных зон, нахождение максимумов мощности для каждой временной (тарифной) зоны, представление данных для анализа в табличном и графическом виде.

Идентификационные данные ПО представлены в табл. 2.

Таблица 2

Наименование программного обеспечения	Наименование программного модуля (идентификационное наименование программного обеспечения)	Наименование файла	Номер версии программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисле- ния циф- рового идентифи- катора программ- ного обес- печения
1	2	3	4	5	6
ПО «АльфаЦЕНТР»	Программа-планировщик опроса и передачи данных (стандартный каталог для всех модулей С:\alphacenter\exe)	amrserver.exe	3.22.0.0	4C8EB1276B2F4B4 34353C386278F4863	MD5

Продолжение таблицы 2

1	2	3	4	5	6
	Драйвер ручного опроса счетчиков и УСПД	amrc.exe	3.22.2.0	5E8E31EBD8A3F7 9ADDF07BC4D0D 87538	
	Драйвер автоматического опроса счетчиков и УСПД	amra.exe	3.22.2.0	B927D357F437F275 CB7B94AC81EA624B	
ПО «АльфаЦЕНТР»	Драйвер работы с БД	cdbora2.dll	3.19.2.0	6366DD409A584F75 1AA0D0FB3BE7CC43	MD5
	Библиотека шифрования пароля счетчиков	encryptdll.dll	2.0.0.0	0939CE05295FBCBB BA400EEAE8D0572C	
	Библиотека сообщений планировщика опросов	alphamess.dll	нет данных	B8C331ABB5E34444 170EEE9317D635CD	

• ПО внесено в Госреестр СИ РФ в составе комплекса измерительновычислительного для учета электрической энергии ИВК «АльфаЦЕНТР», № 20481-00; Программное обеспечение имеет уровень защиты «С» в соответствии с МИ 3286-2010.

Метрологические и технические характеристики

Количество ИК коммерческого учета	4
Номинальное напряжение на вводах системы, кВ	0,4
Отклонение напряжения от номинального, %	±20
Номинальные значения первичных токов ТТ измерительных каналов, А	1500 (ИК 1, 2) 1000 (ИК 3, 4)
Диапазон изменения тока в % от номинального значения тока	от 1 до 120
Коэффициент мощности, соѕ ф	0,5-1
Диапазон рабочих температур для компонентов системы: — трансформаторов тока, счетчиков, °C	от 0 до 35
Пределы допускаемой абсолютной погрешности часов всех компонентов системы, с	±5
Средняя наработка на отказ счетчиков, ч, не менее	120000

Пределы допускаемых относительных погрешностей ИК (измерение активной и реактивной электрической энергии и мощности), %, для рабочих условий эксплуатации АИИС КУЭ ТК «Академический» приведены в табл. 3.

Таблица 3

Номер ИК	Наименование присоединения	Значение сов ф	$1\% I_{\text{HOM}} \le I < 5\% I_{\text{HOM}}$	$5\% I_{HOM} \le I < 20\% I_{HOM}$	$20\% I_{\text{\tiny HOM}} \le 1 < 100\% I_{\text{\tiny HOM}}$	$100\% I_{\text{HOM}} \le I \le 120\% I_{\text{HOM}}$
1	2	3	4	5	6	7
	Активная энергия					
1	ГРЩ-1 Ввод 1	1,0	±2,4	±1,7	±1,5	±1,5
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	ГРЩ-1 Ввод 2 ГРЩ-2 Ввод 1	0,8	±3,3	±2,3	±1,8	±1,8
4	ГРЩ-2 Ввод 2	0,5	±5,6	±3,3	±2,5	±2,5

Продолжение таблицы 3

1	2	3	4	5	6	7	
	Реактивная энергия						
1 2	ГРЩ-1 Ввод 1 ГРЩ-1 Ввод 2	0,8	±5,6	±4,3	±3,8	±3,8	
3 4	ГРЩ-2 Ввод 1 ГРЩ-2 Ввод 2	0,5	±4,2	±3,7	±3,4	±3,3	

Примечание – В качестве характеристик погрешности указаны пределы относительной погрешности измерений (приписанные характеристики погрешности) при доверительной вероятности 0,95.

Надежность применяемых в системе компонентов:

- счётчик среднее время наработки на отказ не менее T=120000 ч, средний срок службы 30 лет;
 - трансформатор тока средний срок службы 25 лет.

Надежность системных решений:

§ резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники розничного рынка электрической энергии по основному (телефонная сеть общего пользования) или резервному (телефонная сеть стандарта GSM) каналам связи;

- § регистрация событий в журнале событий счётчика:
- параметрирования;
- пропадания напряжения;
- коррекции времени в счетчике.

Защищённость применяемых компонентов:

- **§** механическая защита от несанкционированного доступа и пломбирование:
- электросчётчика;
- промежуточных клеммников вторичных цепей напряжения;
- испытательной колодки;
- § защита информации на программном уровне:
- установка пароля на счетчик;
- установка пароля на АРМ.

Глубина хранения информации:

§ счетчик – тридцатиминутный профиль нагрузки в двух направлениях не менее 35 суток;

§ APM – хранение результатов измерений и информации состояний средств измерений – за весь срок эксплуатации системы.

Знак утверждения типа

наносится типографским способом на титульный лист эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электрической энергии и мощности ТК «Академический».

Комплектность средства измерений

В комплект поставки АИИС КУЭ ТК «Академический» входят:

1. Трансформатор тока Т-0,66 У3	12 шт.
2. Счётчик электрической энергии трехфазный многофункциональный	
типа Альфа A1800 A1805RAL-P4G-DW-4	4 шт.
3. Moдем ZyXEL OMNI 56K PRO EE	2 шт.
4. Сотовый модем Cinterion MC52i	1 шт.
5. Многоканальное устройство связи Е200-1	1 шт.
6. Автоматизированное рабочее место энергетика	1 шт.
7. ПО «АльфаЦЕНТР»	1 шт.
8. Методика измерений 4222-002. АДМ-52156036 МИ	1 шт.
9. Паспорт 4222-002.АДМ-52156036 ПС	1 шт.

Поверка

осуществляется по документу МИ 3000-2006 «ГСИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки».

Перечень эталонов, применяемых при поверке:

– средства поверки и вспомогательные устройства, в соответствии с методиками поверки, указанными в описаниях типа на измерительные компоненты АИИС КУЭ, а также приведенные в табл. 2 МИ 3000-2006.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе 4222-002. АДМ-52156036 МИ «Методика измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электрической энергии и мощности ТК «Академический». Свидетельство об аттестации МИ \mathbb{N} 01.00292.432.00246-2012 от 31.10.2012 г.

Нормативные и технические документы, устанавливающие требования к АИИС КУЭ ТК «Академический»

- 1. ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».
- 2. ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».
- 3. МИ 3000-2006. «ГСИ. Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии. Типовая методика поверки.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли и товарообменных операций.

Изготовитель

Закрытое акционерное общество «ОВ» (ЗАО «ОВ»)

Адрес: 198095, г. Санкт-Петербург, ул. Маршала Говорова, д. 40, офис 1.

Тел.: (812) 252-47-53, факс: (812) 252-47-53.

Http: www.ovspb.ru. E-mail: info@ovspb.ru.

-				·		
/	опі і	тотс	A 111 C	TIT TIE	HAHTH	٠
<i>.</i>	CHDI	1 4 1 5		пыи	пспи	,
					центр	

ГЦИ СИ ФБУ «Тест-С.-Петербург» зарегистрирован в Государственном реестре под № 30022-10.

190103, г. Санкт-Петербург, ул. Курляндская, д. 1. Тел.: (812) 244-62-28, 244-12-75, факс: (812) 244-10-04.

E-mail: letter@rustest.spb.ru.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф.В. Булыгин
М.п.	«	»	2013 г.