

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.005.A № 51306

Срок действия бессрочный

НА<mark>ИМЕН</mark>ОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Богдановичского ОАО "Огнеупоры"

заводской номер 01

ИЗГОТОВИТЕЛЬ

Богдановичское открытое акционерное общество "Огнеупоры" (Богдановичское ОАО "Огнеупоры"), г.Богданович, Свердловская область

РЕГИСТРАЦИОННЫЙ № 53995-13

ДОКУМЕНТ НА ПОВЕРКУ МП 81-263-2012

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 25 июня 2013 г. № 622

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства	Ф.В.Булыгин
Федерального агентетва	
	" 2013 г.

Серия СИ № 010444

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Богдановичского OAO «Огнеупоры»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Богдановичского ОАО «Огнеупоры» (далее - АИИС КУЭ) предназначена для измерения электрической энергии и мощности, автоматизированного сбора, накопления и обработки информации о генерации, отпуске и потреблении электрической энергии и мощности, хранения и отображения полученной информации, формирования отчетов по генерации, отпуске и электропотреблению.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную двухуровневую систему с централизованным управлением и распределенной функцией измерения, построенную на базе системы коммерческого учета энергопотребления автоматизированной типа SEP2 (ГР № 17564-98).

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электрической энергии;
- периодический (1 раз в 30 минут) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений активной и реактивной электрической энергии с заданной дискретностью учета (30 минут);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации и от несанкционированного доступа;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей, аппаратных ключей);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы обеспечения единого времени (COEB) в АИИС КУЭ (коррекция времени).

Первый уровень АИИС КУЭ включает в себя 16 измерительно-информационных комплексов точек измерения электроэнергии (ИИК ТИ), которые предназначены для измерения и учета электрической энергии и мощности и построены на базе следующих средств измерений, внесенных в Государственный реестр средств измерений:

- измерительных трансформаторов тока по ГОСТ 7746;
- измерительных трансформаторов напряжения по ГОСТ 1983;
- счетчиков электрической энергии типа МТ85 и МТ 851;
- вторичных измерительных цепей.

Второй уровень АИИС КУЭ включает в себя информационно-вычислительный комплекс электроустановки (ИВКЭ) в состав которого входят:

- компьютер в серверном исполнении (сервер баз данных), оснащенный специализированным программным обеспечением «ISKRAMATIC SEP2W» и автоматизированные рабочие места (APM) для обеспечения функции сбора и хранения результатов измерений, отображения результатов измерений и технологической информации АИИС КУЭ;
- технические средства для организации локальной вычислительной сети и разграничения прав доступа к информации;
- переносной компьютер, выполняющий функции сбора, хранения информации по электроустановке и автоматизированной передаче информации в ИВКЭ от ИИК ТИ, не имеющих постоянного канала связи с ИВКЭ, а также при неработоспособном состоянии ИВКЭ.

Первый уровень АИИС КУЭ обеспечивает автоматическое проведение измерений в точках учета. Измерительные трансформаторы тока и напряжения каждой точки учета преобразуют входные токи и напряжения в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на входы соответствующего электронного счетчика электрической энергии.

Принцип действия счетчиков электрической энергии основан на эффекте Холла и реализован с помощью SPS (Smart Power Sensor) технологии, разработанной фирмой «ISKRAEMECO». SPS сенсор состоит из датчика Холла, аналоговых и цифровых цепей, которые интегрированы в единый кремниевый кристалл и используется как датчик тока и одновременно аналоговый умножитель. Аналоговая и цифровая электроника преобразует напряжение на выходе SPS сенсора в количество импульсов.

В процессе работы счетчик электрической энергии измеряет потребление активной и реактивной электрической энергии, вычисляет средние за период значения активной и реактивной мощности. Полученные результаты сохраняются во внутреннем формате в памяти счетчика с привязкой к текущему времени (профили нагрузки).

Цифровой сигнал с выходов счетчиков электрической энергии путем приема запросов и передачи информации с индикаторов счетчиков поступает на сервер опроса и баз данных по интерфейсу RS-485.

Второй уровень АИИС КУЭ обеспечивает:

- вычисление электрической энергии и мощности с учетом коэффициентов трансформации трансформаторов тока и напряжения;
 - автоматизированный сбор и хранение результатов измерений;
 - ведение журнала событий;
 - автоматическую диагностику состояния средств измерений;
 - формирование отчетных документов;
 - предоставление регламентированного доступа к информации АИИС КУЭ.

Среднюю активную/реактивную электрическую мощность и приращение активной/реактивной электрической энергии на интервале времени усреднения 30 минут для каждого ИИК ТИ вычисляют путем умножения количества импульсов, зарегистрированных в профиле нагрузки счетчика ИИК ТИ за рассматриваемый получасовой интервал, на соответствующие коэффициенты.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ), функционирующей под управлением сервера баз данных. Синхронизация СОЕВ с тайм-сервером первого уровня (Stratum 1) ФГУП «ВНИИФТРИ», подключенным к государственному первичному эталону времени и частоты РФ, осуществляется через сеть Интернет. Программное обеспечение АИИС КУЭ «ISKRAMATIC SEP2W» каждые полчаса сравнивает показания часов сервера баз данных с действительным временем в национальной шкале координированного времени РФ UTC(SU), получаемым через сеть Интернет,. При отклонении

показаний часов сервера баз данных от действительного времени на ± 1 с осуществляется корректировка показаний часов сервера баз данных.

Синхронизация показаний часов счетчиков электрической энергии осуществляется от сервера баз данных. При каждом сеансе связи (1 раз в час) сервер баз данных сравнивает показания своих часов и часов счетчика. В случае отклонения показаний часов счетчика от показаний часов сервера баз данных на величину более ± 2 с сервер баз данных формирует команду на коррекцию, которая в конце текущего опроса поступает на счетчик электрической энергии.

Журналы событий счетчиков электроэнергии и сервера баз данных АИИС КУЭ отражают время коррекции (дата, часы, минуты) часов указанных устройств и расхождение времени в секундах корректируемого и корректирующего устройства в момент времени, непосредственно предшествующий корректировке.

- В процессе работы АИИС КУЭ обеспечивает измерение следующих основных параметров, характеризующих электропотребление по отдельным ИК:
- потребление активной и реактивной электрической энергии (включая обратный переток) за заданные временные интервалы, кратные получасу, по отдельным счетчикам, и предприятию в целом с учетом многотарифности;
- средние (получасовые и суточные) значения активной и реактивной мощности (нагрузки);
- средний (получасовой) максимум активной мощности (нагрузки) в часы утреннего и вечернего максимумов нагрузки по отдельным счетчикам и предприятию в целом.

Для защиты метрологических характеристик системы от несанкционированных изменений (корректировок) предусмотрены возможность пломбирования корпусов технических средств и многоступенчатый доступ к текущим данным и параметрам настройки системы (электронные ключи, индивидуальные пароли).

Перечень ИИК ТИ АИИС КУЭ с указанием непосредственно измеряемой величины, типов и классов точности используемых средств измерений (СИ), номеров регистрации в Государственном реестре СИ (ГР) и заводских номеров этих СИ, представлен в таблице 1.

Номер		Наименование	Изме- ряемая	Тип (обозначение) средства измерения; класс точности; № ГР; коэффициент трансформации; зав. №		
ИИК ТИ	ИК	точки измерений	энергия*	Счетчик	TT	TH
1	2	3	4	5	6	7
1 ПС Башаринска 6 кВ яч. 1 Ввод Т2 прием	ПС Башаринская	A(+)	MT 851 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПОЛ-10 (ТПОЛ-10 У3); 0,5; ГР № 1261-59;	НТМИ-6 (НТМИ-6); 0,5; ГР № 831-53;	
	2		R(+)	ГР № 23306-02; Зав. № 34873448	1500/5; Зав. № 21455, 18763	6000/100; Зав. № 2716
2	3	ПС Башаринская 6 кВ яч. 9 Ввод 2 Т2 прием R(+)	A(+)	MT 851 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПОЛ-10 (ТПОЛ-10 У3); 0,5; ГР № 1261-59;	НТМИ-6-66 (НТМИ-6-66); 0,5; ГР № 2611-70;
2	4		R(+)	ΓΡ № 23306-02; 3ab. № 34873489	0,5, 1 F № 1201-39, 1500/5; Зав. № 1226, 1623	6000/100; 3ab. № 2743

Таблица 1 – Перечень ИИК ТИ АИИС КУЭ

Продолжение таблицы 1

1	2	3	4	5	6	7
3	5	ПС Башаринская 6 кВ яч. 48 Ввод 1 Т1 прием	A(+)	MT 851 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0 ΓP № 23306-02; Зав. № 34873352	ТПОЛ-10 (ТПОЛ-10 У3); 0,5; ГР № 1261-59; 1500/5; Зав. № 543, 550	HТМИ-6 (HТМИ-6); 0,5; ГР № 831-53; 6000/100; Зав. № 3016
	7	ПС Башаринская	A(+)	MT 851 (MT851- T1A32R42-V12L10.1-	ТПОЛ-10 (ТПОЛ-10 У3); 0,5;	HTMИ-6 (НТМИ-6); 0,5;
4	8	6 кВ яч. 51 Ввод 2 Т1 прием	R(+)	М3KO13Z2); 0,5S/1,0 ГР № 23306-02; Зав. № 34873890	0,5, ГР № 1261-59; 1500/5; Зав. № 639, 690	ГР № 831-53; 6000/100; 3ав. № 2954
5	9	ПС Башаринская	A(+)	MT 851 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТОП 0,66 (ТОП 0,66); 0,5; ГР № 15174-96;	Прямое включение по
	10	0,4 кВ СН прием	R(+)	ГР № 27724-04; Зав. № 34874267	200/5; 3aB. № 65443, 6101, 6061	напряжению
6	11	ПС Полдневая 6 кВ яч. 2 Ввод 1	A(+)	MT85 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПЛМ-10 (ТПЛМ-10); 0,5; ГР № 2363-68;	HTMK-6-48 (HTMK-6-48); 0,5; ГР № 323-49;
	12 Т1 прием		R(+)	ГР № 27724-04; Зав. № 34873593	200/5; Зав. № 09894, 09900	6000/100; Зав. № 13422
7 14	13	ПС Полдневая 6 кВ яч. 7 Ввод 2 Т2 прием	A(+)	MT85 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПЛ-10 (ТПЛ-10); 0,5; ГР № 1276-59;	3HOЛ.06-6 (3HOЛ.06-6У3); 0,5; ГР № 3344-08;
	14		R(+)	ГР № 27724-04; Зав. № 34873786	300/5; Зав. № 48743, 49271	6000/100; Зав. № 2005843, 2005812, 2005703
8	6 rB gu 20		A(-)	MT85 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПЛ-10 (ТПЛ-10); 0,5; ГР № 1276-59;	НТМИ-6 (НТМИ-6); 0,5; ГР № 831-53;
			R(-)	ГР № 27724-04; Зав. № 34873478	400/5; Зав. № 1970, 1913	6000/100; Зав. № 2716
9	17	ПС Башаринская 6 кВ яч. 58 ЦРП-1 РСК отдача	A(-)	MT85 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПЛ-10 (ТПЛ-10); 0,5; ГР № 1276-59;	НТМИ-6 (НТМИ-6); 0,5; ГР № 831-53;
18	18		•	ГР № 27724-04; Зав. № 34873827	400/5; 3aв. № 29970, 40575	6000/100; Зав. № 2954
10 20	ПС Башаринская 6 кВ яч. 6	A(-)	MT85 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПОЛ-10 (ТПОЛ-10 У3); 0,5;	НТМИ-6 (НТМИ-6); 0,5; ГР № 831-53;	
	20	Очистные РСК отдача	R(-)	ГР № 27724-04; Зав. № 34873825	ΓP № 1261-59; 200/5; Зав. № 09899, 09846	6000/100; Зав. № 2716
11	21	ПС Башаринская 6 кВ яч. 19	A(-)	MT85 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПЛ-10 (ТПЛ-10); 0,5; ГР № 1276-59;	НТМИ-6-66 (НТМИ-6-66); 0,5; ГР № 2611-70;
	22	ЦРП-2 РСК отдача	R(-)	ГР № 27724-04; Зав. № 34873785	400/5; 3ab. № 42878, 43370	6000/100; Зав. № 2743

Продолжение таблицы 1

1	2	3	4	5	6	7
12	23	ТП-1 6 кВ яч. 4 Рабочая РСК	A(-)	MT85 (MT851- T1A32R42-V12L10.1-	ТПЛМ-10 (ТПЛМ-10); 0,5;	НТМИ-6 (НТМИ-6); 0,5; ГР № 831-53;
	24	отдача	R(-)	М3KO13Z2); 0,5S/1,0 ГР № 27724-04; Зав. № 34873824	ΓP № 2363-68; 200/5; Зав. № 09809, 09873	6000/100; 3ab. № 2528
13 26	25	ТП-1 6 кВ яч. 16 Техникум РСК	A(-)	MT85 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПЛ-10 (ТПЛ-10); 0,5; ГР № 1276-59;	НТМИ-6-66 (НТМИ-6-66); 0,5; ГР № 2611-70;
	26	отдача	R(-)	ГР № 27724-04; Зав. № 34873828	150/5; 3aв. № 61167, 61012	6000/100; 3ab. № 105
14 28	ТП-4 6 кВ яч. 3 АООТ	A(-)	MT85 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПЛ-10 (ТПЛ-10); 0,5; ГР № 1276-59;	НТМИ-6-66 (НТМИ-6-66); 0,5; ГР № 2611-70;	
	28	Транспорт отдача	R(-)	ΓΡ № 27724-04; Зав. № 34873479	50/5; 3ab. № 73857, 1240	6000/100; Зав. № РКАП
15 30	ПС Башаринская 6 кВ яч. 34	A(-)	MT 851 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	ТПЛ-10 (ТПЛ-10); 0,5; ГР № 1276-59;	НТМИ-6 (НТМИ-6); 0,5; ГР № 831-53;	
	30	ф.Стройбаза отдача	R(-)	ΓΡ № 23306-02; 3ab. № 34873353	150/5; 3ав. № 7959, 2586	6000/100; 3ab. № 3016
31 32 33		A(+)		GIF 12/24/40,5	3HOM-35 (3HOM-35-65Y1);	
	32	ПС Башаринская Панель №6	A(-)	MT 851 (MT851- T1A32R42-V12L10.1- M3KO13Z2); 0,5S/1,0	(GIF 40,5); 0,5S; ΓΡ № 30368-05; 200/5; 3ab. №	0,5; ΓP № 912-54; 35000:√3/100:√3;
	33	ф. Полдневская	R(+)	ΓP № 23306-02; 3ab. № 34873805	08/30525844, 08/30525843,	33000. √3/100. √3, Зав. № 914111, 895521, 902474
	34		R(-)		08/30525845	(902675, 962719, 854732)

A(+) – прием активной электрической энергии; A(-) – отдача активной электрической энергии;

Программное обеспечение

Состав и идентификационные признаки метрологически значимой части программного обеспечения (ПО) АИИС КУЭ представлены в таблице 2.

R(+) – прием реактивной электрической энергии;

R(-) – отдача реактивной электрической энергии

Таблица 2 – Идентификационные данные метрологически значимой части ПО

	Идентифика-	Номер версии			
Наименование модуля	ционное	(иденти-	Цифровой идентификатор ПО*		
ПО	наименование	фикационный	цифровой идентификатор по		
	модуля ПО	номер)			
Программа-планировщик опроса и сбора результатов измерений	Sep2Collect.exe	1.64a	344BB34F027BF972946016E6B1E C3623		
Программа для управления БД SEP2	Sep2DbManager.exe	1.64	A622BE2696CD9BC690DF2453AA 85271E		
Генератор отчетов, отображение информации в графическом или табличном видах	Sep2Report.exe	1.65	341611CD1BEDA6A40191CCB689 564A97		
* Алгоритм вычисления цифрового идентификатора – MD5					

Уровень защиты ΠO от непреднамеренного и преднамеренного изменения – C, согласно M M 3286-2010.

Метрологические и технические характеристики

Общее количество ИИК АИИС КУЭ	16
Общее количество ИК АИИС КУЭ	34
Интервал задания тарифных зон	30 минут
Классы точности счетчиков электрической энергии при измерении:	
- активной энергии	0,5S
- реактивной энергии	1,0
Классы точности измерительных трансформаторов тока	0,5S; 0,5
Классы точности измерительных трансформаторов напряжения	0,5
Пределы допускаемой относительной погрешности передачи и	
обработки данных	\pm 0,01 %
Пределы допускаемой относительной погрешности вычисления	
приращения электрической энергии	\pm 0,01 %
Пределы допускаемой относительной погрешности вычисления средней	
мощности	\pm 0,01 %
Пределы допускаемого отклонения показаний часов любого компонента системы от действительного времени в национальной шкале времени	
UTC(SU)* при работающей системе коррекции времени	± 5 c

^{*} UTC(SU) – национальная шкала координированного времени Российской Федерации (см. 3.1.15 ГОСТ 8.567-99).

Основная относительная погрешность измерения электрической энергии и средней мощности не превышает:

- для ИК активной энергии и мощности

1,0 %*

- для ИК реактивной энергии и мощности

1,4 %*

Условия эксплуатации АИИС КУЭ:

- температура окружающей среды для счетчиков электрической энергии, °С от минус 40 до 60
- температура окружающей среды для сервера баз данных, °С

 20 ± 5

Показатели надежности счетчиков типа МТ85 и МТ 851:

- средняя наработка на отказ, ч, не менее

1 847 754

- срок службы, лет, не менее

24

Знак утверждения типа

наносится типографическим способом на титульные листы эксплуатационной документации АИИС КУЭ.

Комплектность средства измерений

Комплектность АИИС КУЭ определяется проектной документацией на АИИС КУЭ. В комплект входит техническая документация на АИИС КУЭ и на комплектующие средства измерений, а также методика поверки МП 81-263-2012.

Поверка

осуществляется по документу МП 81-263-2012 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Богдановичского ОАО «Огнеупоры». Методика поверки», утвержденному ФГУП «УНИИМ» в 2013 г.

Эталоны, используемые при поверке:

- средства поверки измерительных трансформаторов напряжения по ГОСТ 8.216-2011;
- средства поверки измерительных трансформаторов тока по ГОСТ 8.217-2003;
- средства поверки счетчиков электрической энергии в соответствии с документом МИ 2158-91 «ГСИ. Счетчики электрической энергии переменного тока электронные. Методика поверки»;
- приемник навигационный МНП-М3. Пределы допускаемой инструментальной погрешности (при доверительной вероятности 0,95) формирования метки времени, выдаваемой потребителям, по отношению к шкале времени UTC(SU) ± 100 нс, ГР № 38133-08;
 - секундомер СОСпр-2б-2, диапазоны (0-60) с, (0-60) мин, класс точности 2, ГР № 11519-01.

Сведения о методиках (методах) измерений

Методика измерений представлена в документе ИЮНД.411711.004.РЭ «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии Богдановичского ОАО «Огнеупоры». Руководство по эксплуатации».

Представленное значение относительной погрешности ИК получено расчетным путем на основании составляющих погрешности ИК в предположениях: условия эксплуатации счетчиков - нормальные, измеряемые ток и напряжение равны номинальным, фазовый угол между измеряемыми током и напряжением равен 0 или $\pi/2$ при измерении активной или реактивной энергии соответственно. В случае отклонения условий измерения от нормальных предел допускаемой полной погрешности измерения для каждого ИК может быть рассчитан согласно соотношениям, приведенным в МП 81-263-2012.

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии Богдановичского OAO «Огнеупоры»

- 1 ГОСТ Р 8.596-2002 «Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения»
 - 2 ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия»
 - 3 ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли и товарообменных операций.

Изготовитель

Богдановичское открытое акционерное общество «Огнеупоры» (Богдановичское ОАО «Огнеупоры»)

623530, Свердловская область, г. Богданович, ул. Гагарина, д. 2

Тел.: 8 (34376) 2-21-07, 2-14-60

Факс: 8 (34376) 4-77-45, 4-72-14, 2-26-73

e-mail: General@ogneupory.ru

Испытательный центр

Государственный центр испытаний средств измерений Федеральное государственное унитарное предприятие «Уральский научно-исследовательский институт метрологии» (ГЦИ СИ ФГУП «УНИИМ») 620000, г. Екатеринбург, ул. Красноармейская, 4

Тел.: 8 (343) 350-26-18 Факс: 8 (343) 350-20-39 e-mail: uniim@uniim.ru

Аккредитован в соответствии с требованиями Федерального агентства по техническому регулированию и метрологии и зарегистрирован в Государственном реестре средств измерений под № 30005-11. Аттестат аккредитации от 03.08.2011 г.

Заместитель Руководителя Федерального агентства по техническому			
регулированию и метрологии			Ф. В. Булыгин
	М.п.	« »	2013 г.