ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» по Приморскому краю (ГТП Тимофеевка, Хороль)

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» по Приморскому краю (ГТП Тимофеевка, Хороль) (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, формирования отчетных документов и передачи информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ выполненная на основе ИИС «Пирамида» (Госреестр № 21906-11), представляет собой многоуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные комплексы (ИИК) АИИС КУЭ состоят из трех уровней: 1-ый уровень — измерительные трансформаторы напряжения (ТН), измерительные

трансформаторы тока (TT), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-ой уровень – измерительно-вычислительный комплекс электроустановки (ИВКЭ) включающий устройство сбора и передачи данных (УСПД) СИКОН С70 (Госреестр № 28822-05) (для ИИК 1 - 9 функции ИВКЭ выполняет ИВК), технические средства приема-передачи данных, каналы связи, для обеспечения информационного взаимодействия между уровнями системы.

3-ий уровень – информационно-вычислительный комплекс (ИВК), включает в себя сервер сбора данных (ССД) регионального отделения ОАО «Оборонэнергосбыт», основной и резервный серверы баз данных (СБД) ОАО «Оборонэнергосбыт», автоматизированное рабочее место (АРМ), УССВ УСВ-2 (Госреестр № 41681-10), а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие задачи:

- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех ИИК;
- хранение результатов измерений и данных о состоянии средств измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- периодический (1 раз в сутки) и/или по запросу автоматический сбор служебных параметров (изменения параметров базы данных, пропадание напряжения, коррекция даты и системного времени);

- передача результатов измерений в организации-участники оптового рынка электроэнергии в рамках согласованного регламента;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ);

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Результаты измерений для каждого интервала измерения и 30-минутные данные коммерческого учета соотнесены с текущим московским временем. Результаты измерений передаются в целых числах кВт·ч.

На ПС 110/35/10 кВ Хороль установлен УСПД СИКОН С70, который раз в 30 минут по проводным линиям связи опрашивает счетчики, также в нем осуществляется вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН (в счетчиках коэффициенты трансформации выбраны равные единице, так как это позволяет производить замену вышедших из строя приборов учета без их предварительного конфигурирования) и хранение измерительной информации.

ССД, устанавливаемый в ЦСОИ регионального отделения ОАО «Оборонэнергосбыт», с периодичностью один раз в 24 часа по GSM-каналу опрашивает УСПД СИКОН С70, а также счетчики на ПС, не оборудованных УСПД, и считывает с них 30-минутный профиль мощности для каждого канала учета за сутки и журналы событий. Считанные значения записываются в базу данных (под управлением СУБД MS SQL Server).

СБД ОАО «Оборонэнергосбыт» производит вычисление получасовых значений электроэнергии на основании считанного профиля мощности, в автоматическом режиме один раз в сутки считывает из базы данных получасовые значения электроэнергии, формирует и отправляет по выделенному каналу связи отчеты в формате XML всем заинтересованным субъектам.

APM, установленные в ЦСОИ ОАО «Оборонэнергосбыт», считывают данные об энергопотреблении с сервера по сети Ethernet.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ). В СОЕВ входят часы устройства синхронизации времени УСВ-2, УСПД, ССД регионального отделения ОАО «Оборонэнергосбыт», СБД ОАО «Оборонэнергосбыт» и счетчиков. Для обеспечения единства измерений используется единое календарное время. В состав УСВ-2 входят GPS-приемники, что обеспечивает ход часов УСВ-2 не более ± 0.35 с/сут.

Сравнение показаний часов УСВ-2 и СБД ОАО «Оборонэнергосбыт» осуществляется один раз в час. Синхронизация часов УСВ-2 и СБД ОАО «Оборонэнергосбыт» осуществляется один раз в час вне зависимости от величины расхождения показаний часов УСВ-2 и СБД ОАО «Оборонэнергосбыт».

Сравнение показаний часов УСВ-2 и ССД регионального отделения ОАО «Оборонэнергосбыт» осуществляется один раз в час. Синхронизация часов УСВ-2 и сервера регионального отделения ОАО «Оборонэнергосбыт» осуществляется один раз в час вне зависимости от вели-

чины расхождения показаний часов УСВ-2 и ССД регионального отделения ОАО «Оборонэнергосбыт».

Сравнение показаний часов УСПД и ССД происходит при каждом обращении к УСПД, но не реже 1 раза в сутки. Синхронизация осуществляется при расхождении показаний часов УСПД и ССД на величину более чем ± 1 с.

Сравнение показаний часов счетчиков ИИК 10 - 13 и УСПД происходит при каждом обращении к счетчику, но не реже одного раза в 30 минут, синхронизация осуществляется при расхождении показаний часов счетчиков ИИК 10 - 13 и УСПД на величину более чем ± 1 с.

Сравнение показаний часов счетчиков ИИК 1 - 9 и ССД регионального отделения ОАО «Оборонэнергосбыт» осуществляется один раз в сутки, синхронизация осуществляется при расхождении показаний часов счетчиков и сервера регионального отделения ОАО «Оборонэнергосбыт» на величину более чем ± 1 с.

Программное обеспечение

В АИИС КУЭ используется ПО «Пирамида 2000», в состав которого входят программы указанные в таблице 1. «Пирамида 2000» обеспечивает защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами «Пирамида 2000».

Таблица 1 - Идентификационные данные ПО

Наименование	Наименование про-	Наименование	Номер версии	Цифровой идентифика-	Алгоритм вы-
программного	граммного модуля	файла	программно-	тор программного обес-	числения цифро-
обеспечения	(идентификационное на-		го обеспече-	печения (контрольная	вого идентифи-
	именование программ-		кин	сумма исполняемого кода)	катора про-
	ного обеспечения)				граммного обес-
					печения
	модуль, объединяющий	BLD.dll	Версия 8	58a40087ad0713aaa6	MD5
	драйвера счетчиков			668df25428eff7	
	драйвер кэширования	cachect.dll		7542c987fb7603c985	
	ввода данных			3c9all10f6009d	
	драйвер опроса счетчика	Re-		3f0d215fc6l7e3d889	
	CЭT 4TM	gEvSet4tm.dll		8099991c59d967	
	драйвера кэширования и	caches 1.dll		b436dfc978711f46db	
	опроса данных кон-			31bdb33f88e2bb	
	троллеров	cacheS10.dll		6802cbdeda81efea2b	
				17145ffl22efOO	
		siconsl0.dll		4b0ea7c3e50a73099fc9908f	
ПО «Пирамида				c785cb45	
110 «Пирамида 2000»		sicons50.dll		8d26c4d519704b0bc	
2000%				075e73fDlb72118	
	драйвер работы с СОМ-	comrs232.dll		bec2e3615b5f50f2f94	
	портом			5abc858f54aaf	
	драйвер работы с БД	dbd.dll		feO5715defeec25eO62	
				245268ea0916a	
	библиотеки доступа к	ESClient_ex.dll		27c46d43bllca3920c	
	серверу событий			f2434381239d5d	
		filemap.dll		C8b9bb71f9faf20774	
				64df5bbd2fc8e	
	библиотека проверки	plogin.dll		40cl0e827a64895c32	
	прав пользователя при			7e018dl2f75181	
	входе				

Системы информационно-измерительные контроля и учета энергопотребления «Пирамида», включающее в себя ПО «Пирамида 2000», внесены в Госреестр № 21906-11. ПО «Пирамида 2000» аттестовано на соответствие требованиям нормативной документации, свидетельство об аттестации № АПО-209-15 от 26 октября 2011 года, выданное ФГУП «ВНИИМС».

Предел допускаемой дополнительной абсолютной погрешности по электроэнергии, получаемой за счет математической обработки измерительной информации, поступающей от счетчиков, составляет 1 единицу младшего разряда измеренного значения.

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии, а также для разных временных (тарифных) зон не зависят от способов передачи измерительной информации и определяются классами точности применяемых электросчетчиков и измерительных трансформаторов.

Оценка влияния ПО на метрологические характеристики СИ – метрологические характеристики ИИК АИИС КУЭ, указанные в таблице 2, нормированы с учетом ПО. Защита ПО от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов АИИС КУЭ приведен в Таблице 2. Метрологические характеристики АИИС КУЭ приведены в Таблице 3.

$\overline{}$, ~	\sim
	аолина	٠,
1	аолица	4

Tac	аолица 2					1	
\times		Состав ИИК					Вид
Наименование объекта		Трансформатор тока	Трансформатор напряжения	Счётчик элек- трической энер- гии	ивкэ	ИВК	электро- энергии
1	2	3	4	5	6	7	8
	ПС 110/6 кВ "Ракушка", ЗРУ-6 кВ, ф. 5	ТЛО-10 кл. т 0,5S Ктт = 100/5 Зав. № 5908; 5879 Госреестр № 25433-08	НАМИ-10-95 УХЛ2 кл. т 0,5 Ктн = 6000/100 Зав. № 3576 Госреестр № 20186-05	СЭТ- 4ТМ.03М.01 кл. т 0,5S/1,0 3ав. № 0812111595 Госреестр № 36697-08			активная реактивная
2	ПС 110/6 кВ "Ракушка", ЗРУ-6 кВ, ф. 14	ТЛО-10 кл. т 0,5S Ктт = 300/5 Зав. № 6237; 6291 Госреестр № 25433-08	НАМИ-10-95 УХЛ2 кл. т 0,5 Ктн = 6000/100 Зав. № 3576 Госреестр № 20186-05	СЭТ- 4ТМ.03М.01 кл. т 0,5S/1,0 3ав. № 0812111546 Госреестр № 36697-08		iant DL180G6 CZJ24000S4	активная реактивная
3	ПС 110/6 кВ "Ракушка", ЗРУ-6 кВ, ф. 21	ТЛО-10 кл. т 0,5S Ктт = 100/5 Зав. № 5799; 5807 Госреестр № 25433-08	20186-05 № 36697-08 НАМИ-10-95 СЭТ- УХЛ2 4ТМ.03М.01 кл. т 0,5 кл. т 0,5S/1,0 Ктн = 6000/100 Зав. № Зав. № 3738 0812112423 Госреестр № Госреестр 20186-05 № 36697-08	-	HP ProLiant DL180G6 3ab. № CZJ24000S4	активная реактивная	
4	ПС 110/6 кВ "Ракушка", ЗРУ-6 кВ, ф. 18	ТЛО-10 кл. т 0,5S Ктт = 100/5 Зав. № 5821; 5829 Госреестр № 25433-08	НАМИ-10-95 УХЛ2 кл. т 0,5 Ктн = 6000/100 Зав. № 3738 Госреестр № 20186-05	СЭТ- 4ТМ.03М.01 кл. т 0,5S/1,0 3ав. № 0812112695 Госреестр № 36697-08			активная реактивная

Продолжение таблицы 2

Tipo	одолжение таблицы 2						T 6
1	2	3	4	5	6	7	8
		ТЛО-10	НАМИ-10-95	СЭТ-			
		кл. т 0,5S	УХЛ2	4TM.03M.01			
_	ПС 110/6 кВ "Ракушка",	KTT = 200/5	кл. т 0,5	кл. т 0,5S/1,0			активная
	ЗРУ-6 кВ, ф. 23	Зав. № 6079; 6040	$K_{TH} = 6000/100$	Зав. №			реактивная
	οι υ κρ, φ. 23	Госреестр	Зав. № 3738	0812110205			Решктивная
		№ 25433-08	Госреестр №	Госреестр			
		J1= 25+35-00	20186-05	№ 36697-08			
l -		ТЛО-10	НАМИ-10-95	СЭТ-			_
		кл. т 0,5S	УХЛ2	4TM.03M.01			
	ПС 110/6 кВ "Ракушка",	Кл. т 0,38 Ктт = 150/5	кл. т 0,5	кл. т 0,5Ѕ/1,0			armining
	ЗРУ-6 кВ, ф. 19	Зав. № 5960; 5962	$K_{TH} = 6000/100$	Зав. №			активная
1	эг у-0 кв, ф. 19		Зав. № 3738	0812111609			реактивная
		Госреестр	Госреестр №	Госреестр			
		№ 25433-08	20186-05	№ 36697-08			
		ТПО 10	НАМИ-10-95	СЭТ-]		
		ТЛО-10	УХЛ2	4TM.03M.01			
	TIC 110/25/C D IIT 1	кл. т 0,5S	кл. т 0,5	кл. т 0,5S/1,0			
	ПС 110/35/6 кВ "Тимофе-	KTT = 200/5	Ктн = 6000/100	Зав. №	_		активная
	евка", ЗРУ-6 кВ, ф. 8	Зав. № 5986; 6101	Зав. № 3588	0812111630			реактивная
		Госреестр	Госреестр №	Госреестр			
		№ 25433-08	20186-05	№ 36697-08			
			НАМИ-10-95	CЭT-	1		
1		ТЛО-10	УХЛ2	4TM.03M.01			
		кл. т 0,5Ѕ	кл. т 0,5	кл. т 0,5\$/1,0			
	ПС 110/35/6 кВ "Тимофе-	$K_{TT} = 200/5$	Ктн = 6000/100	Зав. №			активная
	евка", ЗРУ-6 кВ, ф. 9	Зав. № 6052; 6112	Зав. № 3588	0812111640			реактивная
1		Госреестр	Госреестр №	Госреестр	9	95 _	
		№ 25433-08	20186-05	№ 36697-08		30G 3S4	
<u> </u>			НАМИ-10-95	CЭT-	1 I	HP ProLiant DL180G6 3ab. № CZJ24000S4	
		ТЛО-10	НАМИ-10-93 УХЛ2	4TM.03M.01		DI 24(
		кл. т 0,5Ѕ				III Z	
9	ПС 110/35/6 кВ "Тимофе- евка", ЗРУ-6 кВ, ф. 6	$K_{TT} = 200/5$	кл. т 0,5	кл. т 0,5S/1,0		Lia º C	активная
		Зав. № 6097; 6032	KTH = 6000/100	Зав. №		ro N	реактивная
1		Госреестр	Зав. № 3627	0812111616		P F 3ab	^
1		№ 25433-08	Госреестр №	Госреестр		Ξ ',	
-			20186-05	№ 36697-08			
		ТЛП-10	НАМИ-10	CЭT-4TM.03.01			
	HC 110/25/10 D "N"	кл. т 0,5S	кл. т 0,2	кл. т 0,5S/1,0			
	ПС 110/35/10 кВ "Хороль", ЗРУ-10 кВ, ф. 6		$K_{TH} = 10000/100$	Зав. №			активная
		Зав. № 9739; 9724	Зав. № 3176	0120072453			реактивная
		Госреестр	Госреестр №	Госреестр			
		№ 30709-08	11094-87	№ 27524-04	ļ i		
		ТПЛМ-10	НАМИ-10	СЭТ-4ТМ.03.01			
		кл. т 0,5	кл. т 0,2	кл. т 0,5S/1,0]		
	ПС 110/35/10 кВ "Хороль",	$K_{TT} = 200/5$	$K_{TH} = 10000/100$	кл. т 0,35/1,0 Зав. №	05		активная
	ЗРУ-10 кВ, ф. 11	Зав. № 41601;	Зав. № 3252	0120071646	22-1		реактивная
	σ. ν το κω, ψ. 11	_ 53493	5ав. № 3232 Госреестр №	Госреестр	770 118 882		Кримтивная
		Госреестр	1 ocpeectp № 11094-87	№ 27524-04	1C 22 22		
L		№ 2363-68			СИКОН С70 Зав. № 02118 Госреестр № 28822-05		
1		ТЛО-10	НАМИ-10	СЭТ-4TM.03.01	3. J.		
		кл. т 0,5	кл. т 0,2	кл. т 0,5Ѕ/1,0	3an Ci		
12	ПС 110/35/10 кВ "Хороль",		KTH = 10000/100	Зав. №	<u> </u>		активная
	ЗРУ-10 кВ, ф. 15	Зав. № 6158; 6157	Зав. № 3252	0108071261	Γ		реактивная
	· 1	Госреестр	Госреестр №	Госреестр			-
		№ 25433-08	11094-87	№ 27524-04			
		ТВЛМ-10	НАМИ-10	CЭT-4TM.03.01	1 I		
		кл. т 0,5	кл. т 0,2	кл. т 0,5\$/1,0			
	ПС 110/35/10 кВ "Хороль",		K _{TH} = 10000/100	Зав. №			активная
	ПС 110/35/10 кВ "Хороль", ЗРУ-10 кВ, ф. 17	3ab. № 1424; 3460	Зав. № 3252	0108071265			реактивная
		Госреестр	5ав. № 3232 Госреестр №	Госреестр]		Кондитивая
		1 осреестр № 1856-63		1 осреестр № 27524-04			
		Na 1920-02	11094-87	JNº 27524-04			

Таблица 3

Номер ИИК $\begin{array}{c} \text{Соѕ}\phi \end{array} = \begin{array}{c} \begin{array}{c} \text{Пределы допускаемой относительной погрешности ИИК п} \\ \text{мерении активной электрической энергии в рабочих услови } \\ \hline 1 - 9 \\ \text{(ТТ 0,5S; ТН 0,5;} \\ \text{Счетчик 0,5S)} \end{array} = \begin{array}{c} 1,0 \\ 0,9 \\ \pm 2,4 \\ 0,8 \\ \pm 3,3 \\ \pm 3,3 \\ \pm 2,2 \\ 0,5 \\ \pm 5,6 \\ \pm 3,4 \\ \pm 1,9 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,7 \\ 0,5 \\ \pm 2,1 \\ 0,5 \\ \pm 2,1 \\ 0,5 \\ \pm 2,1 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,6 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,6 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,6 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,6 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,6 \\ \pm 1,5 \\ \pm 1,7 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,6 \\ \pm 1,5 \\ \pm 1,7 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,6 \\ \pm 1,5 \\ \pm 1,7 \\ 0,9 \\ \pm 2,8 \\ \pm 1,9 \\ \pm 1,6 \\ \pm 1,5 \\ \pm 1,7 \\ 0,7 \\ \pm 3,8 \\ \pm 2,4 \\ \pm 1,9 \\ \pm 1,6 \\ \pm 1,7 \\ 0,5 \\ \pm 5,6 \\ \pm 3,3 \\ \pm 2,5 \\ \pm 2,1 \\ 0,5 \\ \pm 5,6 \\ \pm 3,3 \\ \pm 2,5 \\ \pm $	iях экс- ≤ I _{120 %} 6 7 9 1					
Номер иих $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	s≤ I _{120 %} 6 7 9 1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 7 9 1 7					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 7 9 1 7					
1 - 9 (ТТ 0,5S; ТН 0,5; Счетчик 0,5S) 0,9 ±2,8 ±1,9 ±1,7 ±1,7 0,8 ±3,3 ±2,2 ±1,9 ±1,9 0,7 ±3,9 ±2,5 ±2,1 ±2, 0,5 ±5,6 ±3,4 ±2,7 ±2,7 10 ±2,4 ±1,6 ±1,5 ±1, (ТТ 0,5S; ТН 0,2; Счетчик 0,5S) 0,8 ±3,2 ±2,1 ±1,8 ±1,9 0,7 ±3,8 ±2,4 ±1,9 ±1,6 11 - 13 0,5 ±5,6 ±3,3 ±2,5 ±2, 11 - 13 0,9 - ±2,2 ±1,6 ±1, (ТТ 0,5; ТН 0,2; Счетчик 0,5S) 0,8 - ±2,6 ±1,8 ±1,9 11 - 13 0,9 - ±2,6 ±1,8 ±1,9 11 - 13 0,9 - ±2,6 ±1,8 ±1,9 11 - 13 0,9 - ±2,6 ±1,8 ±1,9 11 - 13 0,9 - ±2,6 ±1,8 ±1,9 10,0 - ±2,6 ±1,8 ±1,9 10,0 - ±2,6 ±1,8 ±1,9 10,0 - ±2,6 ±1,8 ±1,9 10,0 - <td>7 9 1 7</td>	7 9 1 7					
(ТТ 0,5S; ТН 0,5; Счетчик 0,5S) 0,8 ±3,3 ±2,2 ±1,9 ±1,9 0,7 ±3,9 ±2,5 ±2,1 ±2, 0,5 ±5,6 ±3,4 ±2,7 ±2, 10 ±2,4 ±1,6 ±1,5 ±1, (ТТ 0,5S; ТН 0,2; Счетчик 0,5S) 0,8 ±3,2 ±2,1 ±1,8 ±1,9 10 0,7 ±3,8 ±2,4 ±1,9 ±1,9 1,0 - ±3,8 ±2,4 ±1,9 ±1,9 11-13 0,5 ±5,6 ±3,3 ±2,5 ±2, 11-13 0,9 - ±2,2 ±1,6 ±1, 11-13 0,9 - ±2,6 ±1,8 ±1, (ТТ 0,5; ТН 0,2; Счетчик 0,5S) 0,7 - ±3,2 ±2,0 ±1, 11-3 0,7 - ±3,8 ±2,3 ±1,9	9 1 7					
Счетчик 0,5S) $0,7$ $\pm 3,9$ $\pm 2,5$ $\pm 2,1$ $\pm 2,$ $0,5$ $\pm 5,6$ $\pm 3,4$ $\pm 2,7$ $\pm 1,0$ $\pm $	1 7					
10 10 23,9 22,3 22,1 22,7 <t< td=""><td>7</td></t<>	7					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Счетчик 0,5S) $0,7$ $\pm 3,8$ $\pm 2,4$ $\pm 1,9$ $\pm 1,9$ $0,5$ $\pm 5,6$ $\pm 3,3$ $\pm 2,5$ $\pm 1,6$ $\pm 1,5$ $\pm 1,6$ $\pm 1,6$ $\pm 1,7$ $\pm 1,9$ \pm	6					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5					
(ТТ 0,5; ТН 0,2; Счет- чик 0,5S) $0,7$ - $\pm 3,8$ $\pm 2,0$ $\pm 1,0$ $\pm 1,0$	5					
(ТТ 0,5; ТН 0,2; Счет- чик 0,5S) $0,7$ - $\pm 3,2$ $\pm 2,0$ $\pm 1,$ $\pm 3,8$ $\pm 2,3$ $\pm 1,9$	6					
$0,7$ $\pm 3,0$ $\pm 2,3$ $\pm 1,$	8					
	9					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5					
Пределы допускаемой относительной погрешности ИИК п	ри из-					
Номер ИИК соѕф мерении реактивной электрической энергии в рабочих усл	мерении реактивной электрической энергии в рабочих условиях					
эксплуатации б, %	эксплуатации δ, %					
$I_{1(2)} \le I_{\text{H3M}} < I_{5\%} \qquad I_{5\%} \le I_{\text{H3M}} < I_{20\%} \qquad I_{20\%} \le I_{\text{H3M}} < I_{100\%} \qquad I_{100\%} \le I_{\text{H3M}}$	≤ I _{120 %}					
0.9 ± 6.7 ± 5.0 ± 4.2 ± 4.2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6					
$0,5$ $\pm 6,6$ $\pm 3,7$ $\pm 3,4$ $\pm 3,4$	4					
0,9 ±12,0 ±4,6 ±3,0 ±2,9	9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2					
0.5 ± 8.6 ± 2.8 ± 2.1 $\pm 2.$	1					
0,9 - ±7,1 ±3,8 ±2,9	1					
11 – 13 (TT 0,5; TH 0,2; Cчет-						
$\pm 4,3$ $\pm 2,6$ $\pm 2,1$	9					
$0,5$ - $\pm 3,5$ $\pm 2,3$ $\pm 2,$	9 4					

Ход часов компонентов АИИС КУЭ не превышает ±5 с/сут.

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $cos\phi$ =1,0 нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $cos\phi$ <1,0 нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98· Uном до 1,02· Uном;
 - сила тока от Іном до 1,2-Іном, соѕф=0,9 инд;
 - температура окружающей среды: от плюс 15 до плюс 25 °C.

- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9 · Uном до 1,1 · Uном,
 - сила тока от 0,01 Іном до 1,2 Іном для ИИК № 1 10, от 0,05 Іном до 1,2 Іном для ИИК № 11 13;
 - температура окружающей среды:
 - для счетчиков электроэнергии от плюс 5 до плюс 35 °C;
 - для трансформаторов тока по ГОСТ 7746-2001;
 - для трансформаторов напряжения по ГОСТ 1983-2001.
- 6. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики ИИК № 1-9 по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии и ГОСТ Р 52425-2005 в режиме измерения реактивной электроэнергии, счетчики ИИК № 10-13 по ГОСТ 30206-94 в режиме измерения активной электроэнергии и ГОСТ 26035-83 в режиме измерения реактивной электроэнергии.
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 2. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчик электроэнергии СЭТ-4ТМ.03М среднее время наработки на отказ не менее 140000 часов;
- счетчик электроэнергии СЭТ-4ТМ.03 среднее время наработки на отказ не менее 90000 часов;
- СИКОН С70 среднее время наработки на отказ не менее 70000 часов;
- УСВ-2 среднее время наработки на отказ не менее 35000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 2 часа;
- для УСПД Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Tв < 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УССВ, УСПД, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- УСПД (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии СЭТ-4ТМ.03М, СЭТ-4ТМ.03 тридцатиминутный профиль нагрузки в двух направлениях не менее 113,7 суток; при отключении питания не менее 10 лет;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 3.5 лет

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИ-ИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4.

Таблица 4

таолица 4		
Наименование	Тип	Кол.
Трансформатор тока	ТЛО-10	20
Трансформатор тока	ТЛП-10	2
Трансформатор тока	ТПЛМ-10	2
Трансформатор тока	ТВЛМ-10	2
Трансформатор напряжения	НАМИ-10-95 УХЛ2	4
Трансформатор напряжения	НАМИ-10	2
Электросчетчик	CЭT-4TM.03M.01	9
Электросчетчик	CЭT-4TM.03.01	4
Контроллер	SDM-TC65	2
Контроллер	Сикон ТС65	1
УСПД	Сикон С70	1
Сервер регионального отделения ОАО «Оборон-	HP ProLiant DL180G6	1
энергосбыт»	TH TIOLIAN DE18000	1
Устройство синхронизации системного времени	УСВ-2	3
Сервер портов RS-232	Moxa NPort 5410	1
GSM Модем	Teleofis RX100-R	1
Источник бесперебойного питания	APC Smart-UPS 1000 RM	1
Сервер БД ОАО «Оборонэнергосбыт»	SuperMicro 6026T-NTR+	2
Сервер вд ОАО «Оборонэнергосовт»	(825-7)	
GSM Модем	Cinterion MC35i	2
Коммутатор	3Com 2952-SFP Plus	2
Источник бесперебойного питания	APC Smart-UPS 3000 RM	2
Методика поверки	МП 1588/550-2013	1
Паспорт-формуляр	ЭССО.411711.АИИС.840 ПФ	1

Поверка

осуществляется по документу МП 1588/550-2013 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» по Приморскому краю (ГТП Тимофеевка, Хороль). Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» в апреле 2013 г.

Основные средства поверки:

- трансформаторов тока по ГОСТ 8.217-2003;
- трансформаторов напряжения по ГОСТ 8.216-2011;
- счетчиков СЭТ-4ТМ.03 по методике поверки ИЛГШ.411152.124 РЭ1, согласованной ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10.09.2004;
- счетчиков СЭТ-4ТМ.03М по методике поверки ИЛГШ.411152.145 РЭ1 согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» в 2007 г.;
- УСПД СИКОН С70 по методике поверки по методике ВЛСТ 220.00.000 И1, утвержденной ГЦИ СИ ВНИИМС в 2005 г.;
- ИИС «Пирамида» по документу «Системы информационно-измерительные контроля и учета энергопотребления «Пирамида». Методика поверки» ВЛСТ 150.00.000 И1, утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2010 г.;
- УСВ-2 по документу «ВЛСТ 237.00.000И1», утверждённому ГЦИ СИ ФГУП ВНИИФТРИ в 2009 г.;

Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);

Термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50°C, цена деления 1°C.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе:

- «Методика (метод) измерений количества электрической энергии с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» по Приморскому краю (ГТП Тимофеевка)». Свидетельство об аттестации методики (метода) измерений № 0075/2012-01.00324-2011 от 17.08.2012 г.
- «Методика (метод) измерений количества электрической энергии с использованием автоматизированной информационно-измерительной системы коммерческого учета электроэнергии (АИИС КУЭ) ОАО «Оборонэнергосбыт» по Приморскому краю (ГТП Хороль)». Свидетельство об аттестации методики (метода) измерений № 0074/2012-01.00324-2011 от 16.08.2012 г.

Нормативные документы, устанавливающие требования к АИИС КУЭ ОАО «Оборонэнергосбыт» по Приморскому краю (ГТП Тимофеевка, Хороль)

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6 ГОСТ Р 52323-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S.
- 7 ГОСТ Р 52425-2005 Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «Корпорация «ЭнергоСнабСтройСервис»

Адрес (юридический): 121500, г. Москва, Дорога МКАД 60 км, д.4А, офис 204

Адрес (почтовый): 600021, г. Владимир, ул. Мира, д.4а, офис № 3

Телефон: (4922) 33-81-51, 34-67-26

Факс: (4922) 42-44-93

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»).

Аттестат аккредитации № 30010-10 от 15.03.2010 года.

117418 г. Москва, Нахимовский проспект, 31 Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11 Факс (499) 124-99-96

Заместитель			
Руководителя Федерального агент-			
ства по техническому регулирова-			
нию и метрологии			Ф. В. Булыгин
	М.п.	« »	2013 г.
	171.11.	··	2015 1.